Respuesta :

Answer:

  • Solutions:   [tex]\displaystyle\mathsf{x\:=\:\frac{7+ \sqrt{61}}{6}}[/tex] ,   [tex]\displaystyle\mathsf{x\:=\:\frac{7 - \sqrt{61}}{6}}[/tex]

Step-by-step explanation:

We are given the following quadratic equation, 3x² - 1 = 7x, which requires us to find its possible solutions using the quadratic formula.  

Definitions:

  • In a quadratic equation, the leading term has a second-degree (or squared) variable.  
  • The standard form of a quadratic equation is ax² + bx + c = 0, where a, b, and c are real numbers, and that a ≠ 0.

Quadratic Formula:

The quadratic formula is given by:

[tex]\displaystyle\mathsf{x\:=\:\frac{-b\pm\sqrt{b^2-4ac}}{2a}}[/tex]

We will use this formula to solve for the roots or the solution of the given quadratic equation.

Solution:

Step 1: transform the given equaton into standard form.

First, we must subtract "7x" from both sides of the equation:

3x² - 7x - 1 = 7x - 7x

3x² - 7x - 1 = 0     ⇒   This is the standard form of the given quadratic equation where a = 3, b = -7, and c = - 1.

Step 2: Plug in the values for a, b, & c into the quadratic formula.

The derived values for a, b, & c from the previous step are:  a = 3, b = -7, and c = - 1.  Substitute these values into the following quadratic formula:

[tex]\displaystyle\mathsf{x\:=\:\frac{-b\pm\sqrt{b^2-4ac}}{2a}}[/tex]

[tex]\displaystyle\mathsf{x\:=\:\frac{-(-7)\pm\sqrt{(-7)^2-4(3)(-1)}}{2(3)}}[/tex]

Step 3: Following the PEMDAS Order of Operations, start by applying the Power rule of Exponents  [tex]\displaystyle\mathsf{(a^m)^n = (a^{m*n})}[/tex] (under the radical) :

[tex]\displaystyle\mathsf{x\:=\:\frac{-(-7)\pm\sqrt{49-4(3)(-1)}}{2(3)}}[/tex]

Step 4: Next, multiply the integers under the radical, PEMDAS Order of Operations.

[tex]\displaystyle\mathsf{x\:=\:\frac{-(-7)\pm\sqrt{61}}{2(3)}}[/tex]

Step 5: Multiply the integers in the denominator, and apply the multiplication integer rule, -(-a) = a.

[tex]\displaystyle\mathsf{x\:=\:\frac{7\pm\sqrt{61}}{6}}[/tex]

  •  Since [tex]\displaystyle\mathsf{\sqrt{61}}[/tex] is not a perfect square, it can remain the same.

Step 6: Separate the solutions.

[tex]\displaystyle\mathsf{x\:=\:\frac{7+ \sqrt{61}}{6}}[/tex]  , and   [tex]\displaystyle\mathsf{x\:=\:\frac{7 - \sqrt{61}}{6}}[/tex]  

Final Answer:

Therefore, the solution to 3x² - 1 = 7x  are:  [tex]\displaystyle\mathsf{x\:=\:\frac{7+ \sqrt{61}}{6}}[/tex],  [tex]\displaystyle\mathsf{x\:=\:\frac{7 - \sqrt{61}}{6}}[/tex].

_____________________

Keywords:

Quadratic equation

Quadratic function

Standard form

Parabola

______________________

Learn more about quadratic equations here:

https://brainly.com/question/8649555  

Ver imagen djtwinx017