Respuesta :

We know,

[tex]{\qquad { \longrightarrow \pmb {\sf Volume_{(Sphere)} = \dfrac{4}{3} \pi {r}^{3} }}}[/tex]

Here,

  • Diameter of the sphere is 28 m . Therefore, The radius of the sphere is 14 m.

  • We will take the value of π as [tex]\sf\dfrac{22}{7} . [/tex]

Substituting the values in the formula :

[tex]{ \longrightarrow {\qquad {\sf Volume_{(Sphere)} = \dfrac{4}{3} \times \dfrac{22}{7} \times {\bigg(14 \bigg)}^{3} }}}[/tex]

[tex]{ \longrightarrow {\qquad {\sf Volume_{(Sphere)} = \dfrac{4}{3} \times \dfrac{22}{7} \times {2744 }}}}[/tex]

[tex]{ \longrightarrow {\qquad {\sf Volume_{(Sphere)} = \dfrac{4}{3} \times \dfrac{22}{ \cancel7} \times \cancel{2744 }}}}[/tex]

[tex]{ \longrightarrow {\qquad {\sf Volume_{(Sphere)} = \dfrac{4}{ \cancel3} \times {22} \times \cancel{392 }}}}[/tex]

[tex]{ \longrightarrow {\qquad {\sf Volume_{(Sphere)} = {4} \times {22} \times {130.66 }}}}[/tex]

[tex]{ \longrightarrow {\qquad {\pmb{\mathfrak{ Volume_{(Sphere)} = { 11498.66 }}}}}}[/tex]

Therefore,

  • Volume of the sphere is about 11500 cubic meters . (Rounded to nearest tenth)