What is the length of AC? Round to the nearest tenth.
![What is the length of AC Round to the nearest tenth class=](https://us-static.z-dn.net/files/d1e/0811dbffd8c54e7a8dd339b29fa9fae5.png)
Answer:
AC = 8.7 cm (nearest tenth)
Step-by-step explanation:
Given:
To find AC:
[tex]\implies \tan(30)=\dfrac{5}{b}[/tex]
[tex]\implies b=\dfrac{5}{\tan(30)}[/tex]
[tex]\implies b=5\sqrt{3}[/tex]
⇒ b = 8.7 (nearest tenth)
Therefore, the length of AC is 8.7 cm (nearest tenth)
[tex]\\ \rm\Rrightarrow tan30=\dfrac{5}{b}[/tex]
[tex]\\ \rm\Rrightarrow 1/\sqrt{3}=5/b[/tex]
[tex]\\ \rm\Rrightarrow b=5\sqrt{3}[/tex]
[tex]\\ \rm\Rrightarrow b=8.66=8.7cm[/tex]