Respuesta :

Answer:

AC = 8.7 cm (nearest tenth)

Step-by-step explanation:

Given:

  • [tex]\tan(30)=\dfrac{5}{b}[/tex]
  • b = AC

To find AC:

[tex]\implies \tan(30)=\dfrac{5}{b}[/tex]

[tex]\implies b=\dfrac{5}{\tan(30)}[/tex]

[tex]\implies b=5\sqrt{3}[/tex]

⇒ b = 8.7 (nearest tenth)

Therefore, the length of AC is 8.7 cm (nearest tenth)

[tex]\\ \rm\Rrightarrow tan30=\dfrac{5}{b}[/tex]

[tex]\\ \rm\Rrightarrow 1/\sqrt{3}=5/b[/tex]

[tex]\\ \rm\Rrightarrow b=5\sqrt{3}[/tex]

[tex]\\ \rm\Rrightarrow b=8.66=8.7cm[/tex]

  • AC is 8.7cm
ACCESS MORE