Respuesta :
[tex]\\ \rm\Rrightarrow cos40=\dfrac{Base}{Hypotenuse}[/tex]
[tex]\\ \rm\Rrightarrow cos40=\dfrac{a}{10}[/tex]
[tex]\\ \rm\Rrightarrow 0.766=a/10[/tex]
[tex]\\ \rm\Rrightarrow a=0.766(10)[/tex]
[tex]\\ \rm\Rrightarrow a=76.6[/tex]
Answer:
7.66 (dp)
Step-by-step explanation:
Use the cosine trig ratio:
[tex]\mathsf{\cos(\theta)=\dfrac{A}{H}}[/tex]
where:
- [tex]\theta[/tex] is the angle
- A is the side adjacent the angle
- H is the hypotenuse
Given:
- [tex]\theta[/tex] = 40°
- A = a
- H = 10 in
Substituting the given values into the equation:
[tex]\implies \mathsf{\cos(40)=\dfrac{a}{10}}[/tex]
[tex]\implies \mathsf{a=10\cos(40)}[/tex]
[tex]\implies \mathsf{a=7.660444431...}[/tex]
[tex]\implies \mathsf{a=7.66 \ (2 \ dp)}[/tex]