Respuesta :

[tex]\\ \rm\Rrightarrow cos40=\dfrac{Base}{Hypotenuse}[/tex]

[tex]\\ \rm\Rrightarrow cos40=\dfrac{a}{10}[/tex]

[tex]\\ \rm\Rrightarrow 0.766=a/10[/tex]

[tex]\\ \rm\Rrightarrow a=0.766(10)[/tex]

[tex]\\ \rm\Rrightarrow a=76.6[/tex]

Answer:

7.66 (dp)

Step-by-step explanation:

Use the cosine trig ratio:

[tex]\mathsf{\cos(\theta)=\dfrac{A}{H}}[/tex]

where:

  • [tex]\theta[/tex] is the angle
  • A is the side adjacent the angle
  • H is the hypotenuse

Given:

  • [tex]\theta[/tex] = 40°
  • A = a
  • H = 10 in

Substituting the given values into the equation:

[tex]\implies \mathsf{\cos(40)=\dfrac{a}{10}}[/tex]

[tex]\implies \mathsf{a=10\cos(40)}[/tex]

[tex]\implies \mathsf{a=7.660444431...}[/tex]

[tex]\implies \mathsf{a=7.66 \ (2 \ dp)}[/tex]