Respuesta :

The expression [tex]|x|-5 = d[/tex], where [tex]x \in [5, 17][/tex] and [tex]d \in [0,12][/tex], satisfy the given solution set.

How to apply absolute value properties to define a given solution set

Let be 5 and 17 are the lower and upper bounds of the given interval. Thus, both positive numbers. Based on the information presented by the figure:

[tex]|x-5| = d[/tex], where [tex]x \in [5, 17][/tex] and [tex]d \in [0,12][/tex].

[tex]|x|-|5| = d[/tex]

[tex]|x|-5 = d[/tex], where [tex]x \in [5, 17][/tex] and [tex]d \in [0,12][/tex]. (1)

The expression [tex]|x|-5 = d[/tex], where [tex]x \in [5, 17][/tex] and [tex]d \in [0,12][/tex], satisfy the given solution set. [tex]\blacksquare[/tex]

To learn more on absolute values, we kindly invite to check this verified question: https://brainly.com/question/1301718

Answer:

|y-11|=6

Step-by-step explanation:

ACCESS MORE