The exchange rate that She will receive is an algebraic expression
The exchange rate that Salma will receive in dollars per euro is [tex]\frac{12x - 9}{4x -6}[/tex]
The amount of dollars with Salma is given as:
[tex]Dollar = \frac{12x^2 + 15x - 18}{2x^2 + 14x + 20}[/tex]
The amount of Euro she can buy is:
[tex]Euro = \frac{2x^2 -x-3}{x^2 + 6x +5}[/tex]
Let the exchange rate be r.
So, we have:
[tex]Dollar * \frac 1r = Euro[/tex]
The equation becomes
[tex]\frac{12x^2 + 15x - 18}{2x^2 + 14x + 20}* \frac 1r = \frac{2x^2 -x-3}{x^2 + 6x +5}[/tex]
Factorize the expressions
[tex]\frac{3(x + 2)(4x - 3)}{2(x + 5)(x +2)}* \frac 1r = \frac{(x +1)(2x -3)}{(x + 5)*x + 1)}[/tex]
Cancel out the common factors
[tex]\frac{3(4x - 3)}{2}* \frac 1r = \frac{(2x -3)}{1}[/tex]
Make r the subject
[tex]\frac 1r = \frac{2(2x -3)}{3(4x - 3)}[/tex]
Expand
[tex]\frac 1r = \frac{4x -6}{12x - 9}[/tex]
Make r the subject
[tex]r = \frac{12x - 9}{4x -6}[/tex]
Hence, the exchange rate is [tex]\frac{12x - 9}{4x -6}[/tex]
Read more about algebraic expressions at:
https://brainly.com/question/4344214