NO LINKS!!! Part 11
![NO LINKS Part 11 class=](https://us-static.z-dn.net/files/dab/221a44b7a64dab5d8cc4ee18cb5d2adc.jpg)
Answer:
39.4 feet
Step-by-step explanation:
The tangent trig relation can be used to relate the height of the tree to the distance from the observation point. We can start with the tangent relation, then apply it to both observation points.
__
Let h represent the height of the tree. Then for some distance d to the tree, we have ...
Tan = Opposite/Adjacent
tan(30°) = h/d
tan(20°) = h/(d+40)
__
Solving the first equation for d and substituting into the second equation gives ...
d = h/tan(30°)
tan(20°) = h/(h/tan(30°) +40) . . . . . substitute for d
h/tan(30°) +40 = h/tan(20°) . . . . . . multiply by (h/tan(30°)+40)/tan(20°)
h(1/tan(20°) -1/tan(30°) = 40 . . . . . subtract h/tan(30°) and factor
h = 40tan(20°)tan(30°)/(tan(30°) -tan(20°)
h ≈ 39.392 . . . feet
The height of the tree is about 39.4 feet.
_____
As you can see from the attachment, a graphing calculator can solve these equations easily.
Answer:
39.4 ft (nearest tenth)
Step-by-step explanation:
Create two equations using trig ratios and the information given (refer to the attached diagram). Equate the equations and solve.
First equation
Let x = distance along the path with 30° angle of elevation
Let h = height of the tree
Using the tangent trig ratio:
[tex]\mathsf{\tan(\theta)=\dfrac{opposite \ side}{adjacent \ side}}[/tex]
Given:
[tex]\implies \mathsf{\tan(30)=\dfrac{h}{x}}[/tex]
Rearrange to make x the subject:
[tex]\implies \mathsf{x=\dfrac{h}{\tan(30)}}[/tex]
[tex]\implies \mathsf{x=\sqrt{3} \ h}[/tex]
Second equation
Distance along the path with 20° angle of elevation = x + 40
Let h = height of the tree
Using the tangent trig ratio:
[tex]\mathsf{\tan(\theta)=\dfrac{opposite \ side}{adjacent \ side}}[/tex]
Given:
[tex]\implies \mathsf{\tan(20)=\dfrac{h}{x+40}}[/tex]
Rearrange to make x the subject:
[tex]\implies \mathsf{x=\dfrac{h}{\tan(20)}-40}[/tex]
Now equate the 2 equations and solve for h:
[tex]\implies \mathsf{\sqrt{3} \ h=\dfrac{h}{\tan(20)}-40}}[/tex]
[tex]\implies \mathsf{\dfrac{h}{\tan(20)}-\sqrt{3} \ h=40}}[/tex]
[tex]\implies \mathsf{\dfrac{h-\sqrt{3} \ h\tan(20)}{\tan(20)}=40}}[/tex]
[tex]\implies \mathsf{h-\sqrt{3} \ h\tan(20)=40{\tan(20)}}[/tex]
[tex]\implies \mathsf{h(1-\sqrt{3} \tan(20))=40{\tan(20)}}[/tex]
[tex]\implies \mathsf{h=\dfrac{40{\tan(20)}}{1-\sqrt{3} \tan(20)}}[/tex]
[tex]\implies \mathsf{h=39.39231012...}[/tex]
Therefore, the height of the tree is 39.4 ft (nearest tenth)