Respuesta :

Apply law of cosines

[tex]\\ \rm\longmapsto c^2=a^2+b^2-2abcos\gamma[/tex]

[tex]\\ \rm\longmapsto c^2=150^2+35^2-2(150)(35)cos110[/tex]

[tex]\\ \rm\longmapsto c^2=22500+1225-10500(-0.34)[/tex]

[tex]\\ \rm\longmapsto c^2=23725+3570[/tex]

[tex]\\ \rm\longmapsto c^2=27295[/tex]

[tex]\\ \rm\longmapsto c=165.2yd[/tex]

Answer:

165 yd (nearest yard)

Step-by-step explanation:

To calculate the distance from the ball to the center of the green, we need to use the cosine rule:

[tex]c^2=a^2+b^2-2ab \cos (C)[/tex]

where:

  • C is the angle
  • a and b are the sides adjacent to the angle C
  • c is the side opposite the angle C

Therefore, for this triangle:

  • a = 35 yd
  • b = 150 yd
  • C = 110°

Substituting these values into the cosine rule formula:

[tex]\implies c^2=35^2+150^2-2(35)(150) \cos (110\textdegree)[/tex]

[tex]\implies c^2=23725-10500\cos(110\textdegree)[/tex]

[tex]\implies c=\sqrt{23725-10500 \cos(110\textdegree)}[/tex]

[tex]\implies c=165.2761674...[/tex]

[tex]\implies c = 165 \textsf{ yd (nearest yard)}[/tex]

ACCESS MORE