NO LINKS!!! Part 7: Please help me with this problem
![NO LINKS Part 7 Please help me with this problem class=](https://us-static.z-dn.net/files/d91/6009287e3a30a1a356fd4ae6d380d968.jpg)
Apply law of cosines
[tex]\\ \rm\longmapsto c^2=a^2+b^2-2abcos\gamma[/tex]
[tex]\\ \rm\longmapsto c^2=150^2+35^2-2(150)(35)cos110[/tex]
[tex]\\ \rm\longmapsto c^2=22500+1225-10500(-0.34)[/tex]
[tex]\\ \rm\longmapsto c^2=23725+3570[/tex]
[tex]\\ \rm\longmapsto c^2=27295[/tex]
[tex]\\ \rm\longmapsto c=165.2yd[/tex]
Answer:
165 yd (nearest yard)
Step-by-step explanation:
To calculate the distance from the ball to the center of the green, we need to use the cosine rule:
[tex]c^2=a^2+b^2-2ab \cos (C)[/tex]
where:
Therefore, for this triangle:
Substituting these values into the cosine rule formula:
[tex]\implies c^2=35^2+150^2-2(35)(150) \cos (110\textdegree)[/tex]
[tex]\implies c^2=23725-10500\cos(110\textdegree)[/tex]
[tex]\implies c=\sqrt{23725-10500 \cos(110\textdegree)}[/tex]
[tex]\implies c=165.2761674...[/tex]
[tex]\implies c = 165 \textsf{ yd (nearest yard)}[/tex]