NO LINKS!!!

Use the fact that the trigonometric functions are periodic to find the exact value of each expression. Don't use a calculator. This is NOT MULTIPLE CHOICE!!

a. sin (405°)

b. cot (390°)

c. cos (33π/4)

d. sec (17π/4)

c. ​

Respuesta :

[tex]\\ \rm\rightarrowtail sin(405)[/tex]

[tex]\\ \rm\rightarrowtail sin(360+45)[/tex]

[tex]\\ \rm\rightarrowtail sin45[/tex]

[tex]\\ \rm\rightarrowtail \dfrac{1}{\sqrt{3}}[/tex]

#2

[tex]\\ \rm\rightarrowtail cot(390)[/tex]

[tex]\\ \rm\rightarrowtail cot(360+30)[/tex]

[tex]\\ \rm\rightarrowtail cot30[/tex]

[tex]\\ \rm\rightarrowtail \sqrt{3}[/tex]

#3

[tex]\\ \rm\rightarrowtail cos(33\pi/4)[/tex]

[tex]\\ \rm\rightarrowtail cos(8\pi+\pi/4)[/tex]

[tex]\\ \rm\rightarrowtail cos\pi/4[/tex]

[tex]\\ \rm\rightarrowtail \dfrac{1}{\sqrt{2}}[/tex]

#4

[tex]\\ \rm\rightarrowtail sec(17\pi/4)[/tex]

[tex]\\ \rm\rightarrowtail sec(4\pi +\dfrac{\pi}{4})[/tex]

[tex]\\ \rm\rightarrowtail sec\dfrac{\pi}{4}[/tex]

[tex]\\ \rm\rightarrowtail \sqrt{2}[/tex]

Answer:

[tex]\sin(405)=\dfrac{\sqrt{2}}{2}[/tex]

[tex]\cot(390)=\sqrt{3}[/tex]

[tex]\cos\left(\dfrac{33}{4}\pi\right)=\dfrac{\sqrt{2}}{2}[/tex]

[tex]\sec\left(\dfrac{17}{4}\pi\right)=\sqrt{2}[/tex]

Step-by-step explanation:

Trig identities used:

[tex]\sin(A\pm B)=\sin A \cos B \pm \cos A \sin B[/tex]

[tex]\cos(A \pm B)=\cosA \cos B \mp \sin A \sin B[/tex]

[tex]\tan(A \pm B)=\dfrac{\tan A \pm \tan B}{1 \mp \tan A \tan B}[/tex]

[tex]\cot A=\dfrac{1}{\tan A}[/tex]

[tex]\sec A=\dfrac{1}{\cos A}[/tex]

Standard trig angles

[tex]\sin(0 \pm 360n)=\sin(0 \pm 2 \pi n)=0\\\\\cos(0 \pm 360n)=\cos(0 \pm 2 \pi n)=1\\\\\tan(0 \pm 180n)=0\\\\\sin(45 \pm 360n)=\sin(\frac14 \pi \pm 2\pi n)=\dfrac{\sqrt{2}}{2}\\\\\cos(45 \pm 360n)=\cos(\frac14 \pi \pm 2\pi n)=\dfrac{\sqrt{2}}{2}\\\\\tan(30 \pm 180n)=\dfrac{\sqrt{3}}{3}[/tex]

Question a

[tex]\sin (405) = \sin (360 + 45)[/tex]

             [tex]= \sin(360)\cos(45) + \cos(360)\sin(45)[/tex]

             [tex]=0 \cdot \dfrac{\sqrt{2}}{2}+1 \cdot \dfrac{\sqrt{2}}{2}[/tex]

             [tex]=\dfrac{\sqrt{2}}{2}[/tex]

Question b

[tex]\cot(390)=\dfrac{1}{\tan(390)}[/tex]

              [tex]=\dfrac{1}{\tan(360+30)}\\\\[/tex]

              [tex]=\dfrac{1-\tan(360) \tan(30)}{\tan(360)+\tan(30)}[/tex]

              [tex]=\dfrac{1-0 \cdot \frac{\sqrt{3}}{3}}{0+\frac{\sqrt{3}}{3}}[/tex]

              [tex]=\dfrac{1}{\frac{\sqrt{3}}{3}}[/tex]

              [tex]=\sqrt{3}[/tex]

Question c

[tex]\cos\left(\dfrac{33}{4}\pi\right)=\cos(8\pi+\frac14\pi)[/tex]

                  [tex]=\cos(8\pi)\cos(\frac14\pi)}-\sin(8\pi)\sin(\frac14\pi)}[/tex]

                  [tex]=1 \cdot \dfrac{\sqrt{2}}{2}-0 \cdot \dfrac{\sqrt{2}}{2}[/tex]

                  [tex]=\dfrac{\sqrt{2}}{2}[/tex]

Question d

[tex]\sec\left(\dfrac{17}{4}\pi\right)=\dfrac{1}{\cos(4\pi+\frac14\pi)}[/tex]

                 [tex]=\dfrac{1}{\cos(4\pi)\cos(\frac14\pi)-\sin(4\pi)\sin(\frac14\pi)}}[/tex]

                 [tex]=\dfrac{1}{1 \cdot \dfrac{\sqrt{2}}{2} -0 \cdot \dfrac{\sqrt{2}}{2}}[/tex]

                 [tex]=\dfrac{1}{\dfrac{\sqrt{2}}{2} }[/tex]

                 [tex]=\sqrt{2}[/tex]

ACCESS MORE