Respuesta :
Given set ⤵️
73, 68, 73, 85, 92, 81, 88, 35, 48
Mean ↯
[tex] \boxed{ \tt \: mean = \frac{sum \: of \: observations}{total \: number \: of \: observations} }[/tex]
- Total number of observations = 9
[tex] \sf \rightarrowtail \: mean = \frac{73 + 68 + 73 + 85 + 92 + 81 + 88 + 35 + 48}{9} [/tex]
To make the calculation easier, first add the numbers that sum to multiples of 10
[tex] \sf \rightarrowtail \: mean = \frac{643}{9} = 71.4[/tex]
[tex]\red{⊱─━━━━━━━━⊱༻●༺⊰━━━━━━━━─⊰}[/tex]
Median ↯
35, 48, 68, 73, 73, 81, 85, 88, 92
[tex] \boxed{ \tt \: median = ( \frac{n + 1}{2} ) ^{th} \: term }[/tex]
- n is the number of observations I.e. 9 in our case
[tex] \sf \multimap \: median = (\frac{9 + 1}{2} )^{th} \: term[/tex]
[tex] \sf \multimap \: median = (\frac{10}{2} )^{th} \: term[/tex]
[tex] \sf \multimap \: median = 5^{th} \: term[/tex]
[tex] \sf \multimap \: median = 73[/tex]
[tex]\red{⊱─━━━━━━━━⊱༻●༺⊰━━━━━━━━─⊰}[/tex]
Mode ↯
35, 48, 68, 73, 73, 81, 85, 88, 92
- The most occurred number is 73 it has occurred 2 times. Hence, it is the mode!
Solution (Finding the mean of the data):
Step-1: Add the data set.
[tex]\bullet \ \ 73 + 68 + 73 + 85 + 92 + 81 + 88 + 35 + 48[/tex]
[tex]\bullet \ \ 643[/tex]
Step-2: Divide the "added" data set by the total digits in the data set.
There are nine digits in the data set.
[tex]\bullet \ \ \frac{643}9}[/tex]
[tex]\bullet \ \ 71.44[/tex]
Thus, the mean of the data set is 71.44.
Solution (Finding the median of the data):
Step-1: Arrange the data set in descending form.
Greatest => Smallest
[tex]\bullet \ \ 73, 68, 73, 85, 92, 81, 88, 35, 48[/tex]
[tex]\bullet \ \ 92, 88, 85, 81, 73, 73, 68, 48, 35[/tex]
Step-2: Count the number of digits in the data.
[tex]\bullet \ \ \tex\text{9 digits in total}[/tex]
Step-3: Revise the following.
[tex]\bullet \ \ \tex\text{If there are even number of digits:} \ \frac{\tex\text{(Number of digits)}}{2}[/tex]
[tex]\bullet \ \ \tex\text{If there are odd number of digits:} \ \frac{\tex\text{(Number of digits)} + 1}{2}[/tex]
Step-4: Odd or Even?
[tex]\bullet \ \ \tex\text{Even numbers:} \ 2, 4, 6, 8, 10...[/tex]
[tex]\bullet \ \ \tex\text{Odd numbers:} \ \ 1, 3, 5, 7, \bold{9}, 11...[/tex]
There is an odd number of digits.
Step-5: Use the formula.
[tex]\bullet \ \ \frac{\tex\text{(Number of digits)} + 1}{2}[/tex]
[tex]\bullet \ \ \frac{\tex\text{9} + 1}{2}[/tex]
[tex]\bullet \ \ \frac{\tex\text{10}}{2}[/tex]
[tex]\bullet \ \ 5[/tex]
The fifth digit in the data is the median.
Step-6: Revise the data set.
[tex]\bullet \ \ 92, 88, 85, 81, \bold{73}, 73, 68, 48, 35[/tex]
The median is 73.
Solution (Finding the mode of the data set:
The most repeating number is the mode. Let's put the data set in a frequency table.
Step-1: Putting the data set in a frequency table:
~Table attached
Looking at the table, we can tell that 73 has repeated two times and has repeated the most.
The mode is 73.
