Respuesta :
Answer:
2x+3
Step-by-step explanation:
factor into [tex](2x+3)^{2}[/tex]
then square root it [tex]\sqrt{(2x+3)^{2} }[/tex]
We know that,
[tex]{ \longrightarrow \bf \qquad \: {(a + b)}^{2} = {a}^{2} + 2.a.b + {b}^{2} }[/tex]
Solution :
[tex]{ \longrightarrow \sf \qquad \: {4x}^{2} + 12x + 9 }[/tex]
We can also write it as,
[tex]{ \longrightarrow \sf \qquad \: {4x}^{2} + 12x + {3}^{2} }[/tex]
Now, using the formula, we'll solve the expression.
[tex]{ \longrightarrow \sf \qquad \: {2x}^{2} + 2.2x.3 + {3}^{2} }[/tex]
[tex]{ \longrightarrow \sf \qquad \: (2x + 3)^{2} }[/tex]
Since,
- Area = (side)²
Therefore,
- The Length of one side is (2x + 3) .