Respuesta :

Answer:

2x+3

Step-by-step explanation:

factor into [tex](2x+3)^{2}[/tex]

then square root it [tex]\sqrt{(2x+3)^{2} }[/tex]

We know that,

[tex]{ \longrightarrow \bf \qquad \: {(a + b)}^{2} = {a}^{2} + 2.a.b + {b}^{2} }[/tex]

Solution :

[tex]{ \longrightarrow \sf \qquad \: {4x}^{2} + 12x + 9 }[/tex]

We can also write it as,

[tex]{ \longrightarrow \sf \qquad \: {4x}^{2} + 12x + {3}^{2} }[/tex]

Now, using the formula, we'll solve the expression.

[tex]{ \longrightarrow \sf \qquad \: {2x}^{2} + 2.2x.3 + {3}^{2} }[/tex]

[tex]{ \longrightarrow \sf \qquad \: (2x + 3)^{2} }[/tex]

Since,

  • Area = (side)²

Therefore,

  • The Length of one side is (2x + 3) .