Find the length of the third side. If necessary, round to the nearest tenth 22 25

Solution :
Let,
We know that,
[tex]{ \longrightarrow \bf \qquad \: (AB) {}^{2} +( BC) {}^{2} = (AC) {}^{2} }[/tex]
[tex]{ \longrightarrow \sf \qquad \: (22) {}^{2} +( BC) {}^{2} = (25) {}^{2} } [/tex]
[tex]{ \longrightarrow \sf \qquad \: (BC) {}^{2} = (25) {}^{2} - ( 22) {}^{2} }[/tex]
[tex]{ \longrightarrow \sf \qquad \: BC = \sqrt{(25) {}^{2} - ( 22) {}^{2}} }[/tex]
[tex]{ \longrightarrow \sf \qquad \: BC = \sqrt{625 - 484} }[/tex]
[tex]{ \longrightarrow \sf \qquad \: BC = \sqrt{141} }[/tex]
[tex]{ \longrightarrow \bf \qquad \: BC \approx11.87 }[/tex]
Therefore,
Step-by-step explanation:
According to Pythagoras theorem ,
Hypotenuse² = Perpendicular ² + Base ²
Here , we have to find perpendicular
So,
Hypotenuse² - Base² = Perpendicular²
putting the known values
25² - 22² = perpendicular²
141 = perpendicular²
√141 = perpendicular
Perpendicular = 11.9 unit