Respuesta :

  • This is Right Angled Triangle.

Solution :

  • We'll solve this using the Pythagorean Theorem.

Let,

  • Let BC be perpendicular.

  • 22 be AB, where AB is the Base.

  • 25 be AC, where AC is the Hypotenuse.

We know that,

[tex]{ \longrightarrow \bf \qquad \: (AB) {}^{2} +( BC) {}^{2} = (AC) {}^{2} }[/tex]

[tex]{ \longrightarrow \sf \qquad \: (22) {}^{2} +( BC) {}^{2} = (25) {}^{2} } [/tex]

[tex]{ \longrightarrow \sf \qquad \: (BC) {}^{2} = (25) {}^{2} - ( 22) {}^{2} }[/tex]

[tex]{ \longrightarrow \sf \qquad \: BC = \sqrt{(25) {}^{2} - ( 22) {}^{2}} }[/tex]

[tex]{ \longrightarrow \sf \qquad \: BC = \sqrt{625 - 484} }[/tex]

[tex]{ \longrightarrow \sf \qquad \: BC = \sqrt{141} }[/tex]

[tex]{ \longrightarrow \bf \qquad \: BC \approx11.87 }[/tex]

Therefore,

  • The length of the third side is 11.9 (Nearest tenth of 11.87) .
Ver imagen Аноним

Step-by-step explanation:

According to Pythagoras theorem ,

Hypotenuse² = Perpendicular ² + Base ²

Here , we have to find perpendicular

  • Hypotenuse = 25 unit
  • Base = 22 unit

So,

Hypotenuse² - Base² = Perpendicular²

putting the known values

25² - 22² = perpendicular²

141 = perpendicular²

√141 = perpendicular

Perpendicular = 11.9 unit

ACCESS MORE