[tex]\bold{\huge{\underline{ Solution }}}[/tex]
Here, We have
The given function represents the total distance in miles covered by the traveller.
For initial interval that is x = 1 , Distance covered by the traveller
[tex]\sf{ f(x) = -45x + 270 }[/tex]
[tex]\sf{ f(1) = - 45(1) + 270 }[/tex]
[tex]\sf{ f(1) = - 45 + 270 }[/tex]
[tex]\sf{ f(1) = 225 }[/tex]
For final interval that is x = 3, Distance covered by the traveller
[tex]\sf{ f(x) = - 45x + 270 }[/tex]
[tex]\sf{ f(1) = - 45(3) + 270 }[/tex]
[tex]\sf{ f(1) = - 135 + 270 }[/tex]
We have to find the average rate of change over the given time interval
Average rate of change in the given time interval
[tex]\sf{ = }{\sf{\dfrac{ f(1) + f(3) }{3 - 1}}}[/tex]
[tex]\sf{ = }{\sf{\dfrac{ 225 + ( -135) }{ 2}}}[/tex]
[tex]\sf{ = }{\sf{\dfrac{ 225 - 135 }{ 2}}}[/tex]
[tex]\sf{ = }{\sf{\dfrac{ 90 }{ 2}}}[/tex]
[tex]\sf{ = 45 }[/tex]
Hence, The average rate of change over the given interval is 45 miles per hour.