Answer:
See Below.
Step-by-step explanation:
Problem #2
We want to find the general expression for the differential equation:
[tex]\displaystyle \frac{dy}{dx} = \frac{9x-2}{3\sqrt{x}}[/tex]
Separation of variables:
[tex]\displaystyle dy = \frac{9x-2}{3\sqrt{x}} \, dx[/tex]
Take the indefinite integral of both sides and integrate:
[tex]\displaystyle \begin{aligned} \int 1 \, dy & = \int \frac{9x-2}{3\sqrt{x}} \, dx \\ \\ y & = \int \frac{9x}{3\sqrt{x}} - \frac{2}{3\sqrt{x}}\,dx \\ \\ & = \int 3 x\cdot x^{-1/2} \, dx +\int -\frac{2}{3}x^{-1/2}\, dx \\ \\ & = 3\int x^{1/2} \, dx -\frac{2}{3}\int x^{-1/2} \, dx \\ \\ & = 3\left(\frac{2}{3}x^{3/2}\right)-\frac{2}{3}\left(2x^{1/2}\right) \\ \\ & = 2x^{3/2} -\frac{4}{3}\sqrt{x} + C\end{aligned}[/tex]
Hence, the general expression is:
[tex]\displaystyle y = 2x^{3/2} -\frac{4}{3}\sqrt{x} + C[/tex]
Problem #3
We want to evaluate the integral:
[tex]\displaystyle \int \left( 5-x^2 + \frac{18}{x^4}\right) \, dx[/tex]
Apply the power rule for integrals:
[tex]\displaystyle \begin{aligned} \int \left(5-x^2+\frac{18}{x^4}\right)\, dx & = \int \left(5x^0-x^2+18x^{-4}\right)\, dx \\ \\ & = 5x-\frac{1}{3}x^3+18\left(-\frac{1}{3}x^{-3}\right) + C \\ \\ & = 5x-\frac{1}{3}x^3 -\frac{18}{3}x^{-3} + C \\ \\ & = 5x-\frac{1}{3}x^3-\frac{6}{x^3} + C\end{aligned}[/tex]
In conclusion:
[tex]\displaystyle \begin{aligned} \int \left(5-x^2+\frac{18}{x^4}\right)\, dx & = 5x-\frac{1}{3}x^3-\frac{6}{x^3} + C\end{aligned}[/tex]