Find the area of the shade region if d=18 units. Round to the nearest tenth.
![Find the area of the shade region if d18 units Round to the nearest tenth class=](https://us-static.z-dn.net/files/d57/8565ba19105ea7fb0498a268ef780eed.png)
Answer:
Area of shaded region = 254.5 square units
Step-by-step explanation:
We have 3 semicircles:
d = 18 units
Semicircle 1 = The big semicircle
Semicircle 2 and 3 = The two small semicircles
Semicircle 2 = 18 units
Semicircle 3 = 18 units
Semicircle 1 = Semicircle 2 + Semicircle 3 = 36 units
Radius = Half of the diameter
Semicircle 1 radius = 18 units
Semicircle 2 radius = 9 units
Semicircle 3 radius = 9 units
[tex]\mathrm{Area\:of\:a\:semicircle = \dfrac{ \pi r^2 }{ 2 }}[/tex]
[tex]\mathrm{Area\:of\:shaded\:region = Area\:of\:Semicircle\:1 - (Area\:of\:Semicircle\:2 + Area\:of\:Semicircle\:3)}[/tex]
[tex]\mathrm{Area\:of\:shaded\:region = \dfrac{ \pi r^2 }{ 2 } - ( \dfrac{ \pi r^2 }{ 2 } + \dfrac{ \pi r^2 }{ 2 } )}[/tex]
[tex]\mathrm{Substitute\:the\:numbers\:into\:the\:equation}[/tex]
[tex]\mathrm{Area\:of\:shaded\:region = \dfrac{ \pi (18)^2 }{ 2 } - ( \dfrac{ \pi (9)^2 }{ 2 } + \dfrac{ \pi (9)^2 }{ 2 } )}[/tex]
[tex]\mathrm{Do\:all\:of\:the\:exponents\:first}[/tex]
[tex]\mathrm{Area\:of\:shaded\:region = \dfrac{ \pi\times324 }{ 2 } - ( \dfrac{ \pi\times81}{ 2 } + \dfrac{ \pi\times81}{ 2 } )}[/tex]
[tex]\mathrm{Combine\:\dfrac{ \pi\times81}{ 2 }\:and\:\dfrac{ \pi\times81}{ 2 }\:to\:get\:\pi\times81}[/tex]
[tex]\mathrm{Area\:of\:shaded\:region = \dfrac{ \pi\times324 }{ 2 } - ( \pi\times81 )}[/tex]
[tex]\mathrm{Divide\: \pi \times324\:by\:2}[/tex]
[tex]\mathrm{Area\:of\:shaded\:region = { \pi\times162} - \pi\times81}[/tex]
[tex]\mathrm{Combine\:\pi \times162\:and\:- \pi \times81}[/tex]
[tex]\mathrm{Area\:of\:shaded\:region = 81\pi}[/tex]
[tex]\mathrm{Area\:of\:shaded\:region = 254.469004941}[/tex]
Area of shaded region rounded to the nearest tenth is: 254.5 square units
look at the picture for more information