Respuesta :
Answer:
The approximate volume of the whole shape is 41.9 in
Step-by-step explanation:
Provided:
height = 6
radius = 2
The total volume:
Variables:
[tex]Vt = total\;volume[/tex]
[tex]Vcone = volume\:of\:a\:cone=\dfrac{ 1 }{ 3 } \pi { r }^{ 2 } h[/tex]
[tex]Vhemisphere = volume\:of\:a\:hemisphere= \dfrac{ 2 }{ 3 } \pi { r }^{ 3 }[/tex]
[tex]Vt = Vcone + Vhemisphere[/tex]
[tex]Vt = \dfrac{ 1 }{ 3 } \pi { r }^{ 2 } h+ \dfrac{ 2 }{ 3 } \pi { r }^{ 3 }[/tex]
[tex]Vt = \dfrac{ 1 }{ 3 } \left( 3.14 \right) { \left( 2 \right) }^{ 2 } \left( 6 \right) + \dfrac{ 2 }{ 3 } \left( 3.14 \right) { \left( 2 \right) }^{ 3 }[/tex]
[tex]\mathrm{Remove\:all\:parenthesis}[/tex]
[tex]Vt = \dfrac{ 1 }{ 3 }\times \left 3.14 \right\times { \left 2 \right }^{ 2 }\times \left 6 \right + \dfrac{ 2 }{ 3 } \times\left 3.14 \right\times { \left 2 \right }^{ 3 }[/tex]
[tex]\mathrm{Do\:the\:exponents\:first}[/tex]
[tex]Vt = \dfrac{ 1 }{ 3 }\times \left 3.14 \right\times 4\times \left 6 \right + \dfrac{ 2 }{ 3 } \times\left 3.14 \right\times 8[/tex]
[tex]\mathrm{Multiply\:\dfrac{ 1 }{ 3 }\:and\:3.14}[/tex]
[tex]Vt = 1.04666667 \right\times 4\times \left 6 \right + \dfrac{ 2 }{ 3 } \times\left 3.14 \right\times 8[/tex]
[tex]\mathrm{Multiply\:\dfrac{ 2 }{ 3 }\:and\:3.14}[/tex]
[tex]Vt = 1.04666667 \right\times 4\times \left 6 \right + 2.09333333\times 8[/tex]
[tex]\mathrm{Multiply\:1.04666667\:by\:4\:and\:then\:by\:6}[/tex]
[tex]Vt = 25.12 + 2.09333333\times 8[/tex]
[tex]\mathrm{Multiply\:2.09333333\:by\:8}[/tex]
[tex]Vt = 25.12 + 16.746667[/tex]
[tex]\mathrm{Add\:25.12\:and\:16.746667}[/tex]
[tex]Vt = 41.866667[/tex]
[tex]\mathrm{41.866667\:rounded\:to\:the\:nearest\:tenth\:is\:41.9}[/tex]
[tex]Vt = 41.9[/tex]