Damian dilates PQR shown on the coordinate grid with a scale factor of 0.5 centered at the origin. then he translate the 1 unit up and 3 units to the right to from P' Q' R' what are the coordinates of the vertices P' Q' R'
![Damian dilates PQR shown on the coordinate grid with a scale factor of 05 centered at the origin then he translate the 1 unit up and 3 units to the right to fro class=](https://us-static.z-dn.net/files/da3/8b4a912c26c843f35620796000d6f2a4.jpg)
Answer:
P[tex]\begin{matrix}'\\i\\\end{matrix}[/tex](0.3) Q':(4,5) R[tex]\begin{matrix}'\\:\\\end{matrix}[/tex](4,-1)
Step-by-step explanation:
[tex]P\left(-6,4\right)\ \ \ \ \ Q\left(2,8\right),R\left(2,-4\right)[/tex]
[tex]1.\ a\ scale\ factor\ of\ 05\ centered\ at\ 0.[/tex]
[tex]P\left(-6,4\right)\rightarrow[/tex][tex]P_1\left(-3,2\right)\ \ \ \ \ Q[/tex][tex]\left(2,8\right)\rightarrow[/tex][tex]Q_1\left(1,4\right)[/tex]
[tex]R\left(2,-4\right) > R_1\left(1,-2\right)[/tex]
[tex]2.\ I\ unit\ np.\ 3\ units\ rign\ t.[/tex]
[tex]the\ y\ plus\ 1,\ x\ plus\ 3[/tex]
[tex]P_1\left(-3,2\right)[/tex][tex]\rightarrow[/tex][tex]P^'[/tex][tex]\left(0,3\right)[/tex]
[tex]Q_1[/tex][tex]\left(1,4\right)[/tex][tex]\rightarrow[/tex][tex]Q^'[/tex][tex]\left(4,5\right)[/tex]
[tex]R_1\left(1,-2\right)\rightarrow[/tex][tex]R^'[/tex][tex]\left(4,-1\right)[/tex]
[tex]So\ the\ final\ coordinates\ of\[/tex]Δ[tex]P'Q'R'[/tex]
[tex]are\ above.[/tex]
I hope this helps you
:)