Respuesta :

Answer:

(x+8)^2

Step-by-step explanation:

Please mark me brainliest

Factoring  x2+16x+64

The first term is,  x2  its coefficient is  1 .

The middle term is,  +16x  its coefficient is  16 .

The last term, "the constant", is  +64

Step-1 : Multiply the coefficient of the first term by the constant   1 • 64 = 64

Step-2 : Find two factors of  64  whose sum equals the coefficient of the middle term, which is   16 .

     -64    +    -1    =    -65

     -32    +    -2    =    -34

     -16    +    -4    =    -20

     -8    +    -8    =    -16

     -4    +    -16    =    -20

     -2    +    -32    =    -34

     -1    +    -64    =    -65

     1    +    64    =    65

     2    +    32    =    34

     4    +    16    =    20

     8    +    8    =    16    That's it

Step-3 : Rewrite the polynomial splitting the middle term using the two factors found in step 2 above,  8  and  8

                    x2 + 8x + 8x + 64

Step-4 : Add up the first 2 terms, pulling out like factors :

                   x • (x+8)

             Add up the last 2 terms, pulling out common factors :

                   8 • (x+8)

Step-5 : Add up the four terms of step 4 :

                   (x+8)  •  (x+8)

            Which is the desired factorization

Multiply  (x+8)  by  (x+8)

The rule says : To multiply exponential expressions which have the same base, add up their exponents.

In our case, the common base is  (x+8)  and the exponents are :

         1 , as  (x+8)  is the same number as  (x+8)1

and   1 , as  (x+8)  is the same number as  (x+8)1

The product is therefore,  (x+8)(1+1) = (x+8)2

Final Result: (x + 8)2