Respuesta :

Answer:

The point (11, 5) is NOT on the parabola.

Step-by-step explanation:

Let [tex](x_0,y_0)[/tex] be any point on the parabola

Let [tex](a, b)[/tex] be the focus

Let [tex]y=c[/tex] be the the directrix

Distance between [tex](x_0,y_0)[/tex] and the focus: [tex]\sqrt{(x_0-a)^2+(y_0-b)^2}[/tex]

Distance between [tex](x_0,y_0)[/tex] and the directrix is [tex]|y_0-c|[/tex]

Given:

  • focus  (6, 4)
  • directrix  y = 0

Therefore:

Distance between [tex](x_0,y_0)[/tex] and the focus: [tex]\sqrt{(x_0-6)^2+(y_0-4)^2}[/tex]

Distance between [tex](x_0,y_0)[/tex] and the directrix is [tex]|y_0-0|[/tex]

Equate the two expressions and solve for [tex]y_0[/tex]:

     [tex]\sqrt{(x_0-6)^2+(y_0-4)^2}=|y_0-0|[/tex]

[tex]\implies (x_0-6)^2+(y_0-4)^}=(y_0-0)^2[/tex]

[tex]\implies {x_0}^2-12x_0+36+{y_0}^2-8y_0+16={y_0}^2[/tex]

[tex]\implies {x_0}^2-12x_0-8y_0+52=0[/tex]

[tex]\implies 8y_0={x_0}^2-12x_0+52[/tex]

[tex]\implies y_0=\dfrac18{x_0}^2-\dfrac{12}{8}x_0+\dfrac{52}{8}[/tex]

[tex]\implies y_0=\dfrac18{x_0}^2-\dfrac32x_0+\dfrac{13}{2}[/tex]

Now rewrite with (x, y):

[tex]\implies y=\dfrac18x^2-\dfrac32x+\dfrac{13}{2}[/tex]

Therefore, this is the equation of the parabola

To determine if the point (11, 5) is on the parabola, input x = 11 into the equation:

[tex]\implies y=\dfrac18(11)^2-\dfrac32(11)+\dfrac{13}{2}[/tex]

[tex]\implies y=\dfrac{41}{8}[/tex]

So the point (11, 5) is NOT on the parabola.

ACCESS MORE