Respuesta :

Answer:

b)  [tex]4x^2-12x+9=0[/tex]

Step-by-step explanation:

We can use the discriminant [tex]b^2-4ac[/tex] to determine how many real solutions a quadratic equation in the form [tex]ax^2+bx+c=0[/tex] has.

  • discriminant > 0 ⇒ 2 real solutions
  • discriminant = 0 ⇒ 1 real solution
  • discriminant < 0 ⇒ no real solutions

[tex]5x^2+9x-4=0[/tex]

[tex]b^2-4ac=9^2-4(5)(-4)=161 > 0\implies \textsf{2 solutions}[/tex]

[tex]4x^2-12x+9=0[/tex]

[tex]b^2-4ac=(-12)^2-4(4)(9)=0 \implies \textsf{1 solution}[/tex]

[tex]-9x^2+6x+1=0[/tex]

[tex]b^2-4ac=6^2-4(-9)(1)=72 > 0 \implies \textsf{2 solutions}[/tex]

[tex]-2x^2-7=0[/tex]

[tex]b^2-4ac=0^2-4(-2)(-7)=-56 < 0 \implies \textsf{no solutions}[/tex]