4. Given the right triangle below, solve for e (theta) and a (alpha).

Answer:
Θ ≈ 67.4° , α ≈ 22.6°
Step-by-step explanation:
using the sine ratio in the right triangle
sinΘ = [tex]\frac{opposite}{hypotenus}[/tex] = [tex]\frac{12}{13}[/tex] , then
Θ = [tex]sin^{-1}[/tex] ( [tex]\frac{12}{13}[/tex] ) ≈ 67.4° ( to 1 dec. place )
and
sinα = [tex]\frac{opposite}{hypotenuse}[/tex] = [tex]\frac{5}{13}[/tex] , then
α = [tex]sin^{-1}[/tex] ( [tex]\frac{5}{13}[/tex] ) ≈ 22.6° ( to 1 dec. place )