Respuesta :

There are two ways ,let's check

Proof:-

[tex]\boxed{\begin{array}{c|c}{\boxed{\bf{Statement}}}&{\boxed{\bf{Reason}}}\\ \sf AB\cong CB &\sf Given \\ \sf AD\cong CD &\sf Given \\ \sf <BAD\cong <BCD &\sf Given \\ \sf BD\cong BD &\sf Common\:side\end{array}}[/tex]

So

[tex]\\ \rm\rightarrowtail \triangle ABD\cong \triangle CBD (SSS)\:or\:(SAS)[/tex]

Given ↷

  • AB ≊ CB
  • AD ≊ CD
  • ∠BAD ≊ ∠BCD
  • BD bisects ∠ABC

To prove ↷

  • ∆ABD ≊ ∆CBD

Proof ↷

In ∆ABD & ∆CBD,

Statement 1

  • AB ≊ CB

Reason

  • Given

Statement 2

  • AD ≊ CD

Reason

  • Given

Statement 3

  • ∠BAD ≊ ∠BCD

Reason

  • Given

Statement 4

  • BD ≊ BD

Reason

  • Common side between∆ABD & ∆CBD

Statement 5

  • ∠BDA ≊ ∠BDC

Reason

  • Angles formed on the base of bisector are equal

Hence , ∆ABD ≊ ∆CBD by side angle side criterion

ACCESS MORE