Respuesta :

Given Equation :

[tex]\qquad \sf \dashrightarrow \: \dfrac{y}{9} = \dfrac{ 8}{12} [/tex]

To Find :

  • The value of y

By doing cross multiplication we get :

[tex]\qquad \sf \dashrightarrow \: y(12) = 9(8)[/tex]

[tex]\qquad \sf \dashrightarrow \: 12y = 72[/tex]

Dividing both sides by 12 we get :

[tex]\qquad \sf \dashrightarrow \: \dfrac{12y}{12} = \dfrac{72}{12} [/tex]

[tex]\qquad \bf \dashrightarrow \: y = 6[/tex]

To Check :

[tex] \sf \dashrightarrow L. H.S = \dfrac{y}{9} \\ \\ \sf \dashrightarrow L. H.S = \dfrac{6}{9} \\ \\ \sf \dashrightarrow L. H.S = \dfrac{2}{3} \\ [/tex]

[tex] \sf \dashrightarrow R. H.S = \dfrac{8}{12} \\ \\ \sf \dashrightarrow R. H.S = \dfrac{2}{3} [/tex]

Therefore,

  • L.H.S = R.H.S

We are given with an expression and we need to solve for y , so let's start with the given first :

[tex]{:\implies \quad \sf \dfrac{y}{9}=\dfrac{8}{12}}[/tex]

Multiply both sides by 9 ;

[tex]{:\implies \quad \sf 9\times \dfrac{y}{9}=9\times \dfrac{8}{12}}[/tex]

Simplifying will yield ;

[tex]{:\implies \quad \bf \therefore \quad \underline{\underline{y=6}}}[/tex]

Henceforth, the required value is 6