Respuesta :

it would be [1 -5 -2 11]
to solve this you swap the places of 1 and 4 and switch the signs from + to - OR - to + for 2 and 3.

The inverse of the given matrix is,

[tex]=\begin{pmatrix}1&-5\\ -2&11\end{pmatrix}[/tex]

We have to determine

[tex]\begin{pmatrix}11&5\\ 2&1\end{pmatrix}^{-1}[/tex]

What is the formula of inverse?

[tex]\quad \begin{pmatrix}a\:&\:b\:\\ c\:&\:d\:\end{pmatrix}^{-1}=\frac{1}{\det \begin{pmatrix}a\:&\:b\:\\ c\:&\:d\:\end{pmatrix}}\begin{pmatrix}d\:&\:-b\:\\ -c\:&\:a\:\end{pmatrix}[/tex]

[tex]=\frac{1}{\det \begin{pmatrix}11&5\\ 2&1\end{pmatrix}}\begin{pmatrix}1&-5\\ -2&11\end{pmatrix}[/tex]

determinant of the given matrix is 1.

[tex]=\frac{1}{1}\begin{pmatrix}1&-5\\ -2&11\end{pmatrix}[/tex]

[tex]=\begin{pmatrix}1&-5\\ -2&11\end{pmatrix}[/tex]

To learn more about the matrix visit:

https://brainly.com/question/1821869

#SPJ2

ACCESS MORE