The probability of event A is 0. 65, and the probability of event B is 0. 76. The probability of both event A and event B occurring is 0. 494. Are events A and B dependent or independent? In this scenario, events A and B are events.

Respuesta :

If P(A) and P(B) are equal to 0.494 which is P(A∩B). Then event A and event B are independent.

What is probability?

Probability means possibility. It deals with the occurrence of a random event. The value of probability can only be from 0 to 1. Its basic meaning is something is likely to happen. It is the ratio of the favorable event to the total number of events.

The probability of event A is 0. 65, and the probability of event B is 0. 76.

The probability of both event A and event B occurring is 0. 494.

[tex]P(A) = 0.65\\\\P(B) = 0.76\\\\P(A \cap B ) = 0.494[/tex]

If P(A) and P(B) are equal to 0.494. Then they are independent.

[tex]P(A) * P(B) = 0.65*0.76 = 0.494\\\\P(A) *P(B) = P(A \cap B )[/tex]

Hence, event A and event B are independent.

More about the probability link is given below.

https://brainly.com/question/795909

ACCESS MORE