On the grid, A(-3,1), B(1,-2), and C(4,2) are connected. Kaire claims triangle ABC is a right isosceles triangle.
![On the grid A31 B12 and C42 are connected Kaire claims triangle ABC is a right isosceles triangle class=](https://us-static.z-dn.net/files/d40/73f42af4623e9042c47ca2191f8598ad.jpg)
Answer:
part A:
[tex]\sf AB^2 = (-2-1)^2 + (1+3)^2[/tex]
[tex]\sf AB^2 =25[/tex]
[tex]\sf AB =5[/tex]
[tex]\sf AC^2 = (2-1)^2 + (4+3)^2[/tex]
[tex]\sf AC^2 = 50[/tex]
[tex]\sf AC = 5\sqrt{2}[/tex]
[tex]\sf BC^2 = (2--2)^2 + (4-1)^2[/tex]
[tex]\sf BC^2 = 25[/tex]
[tex]\sf BC = 5[/tex]
Two sides are equal in the triangle of 5. Its an isosceles triangle.
part B:
if right angle triangle, then use the formula:
short side² + short side² = long side²
( 5√2 )² + 5² = ( 5√2 )²
75 = 50
Therefore, its not a right angle triangle.