By solving given equation and then finding discriminant we get that this system of equations have 2 solutions
Collection of two or more equations with a same set of unknowns is called system of equations.
Given equation
[tex]$y=-2 x+2\ \ ...(1)\\\\y=x^{2}-3 x$\ \ \ ...(2)[/tex]
From equation (1) and (2)
[tex]x^{2}-3 x=-2 x+2\\\\x^{2}-3 x+2 x-2=0\\\\x^{2}-x-2=0[/tex]
This is a quadratic equation
So discriminant
[tex]D=b^2-4ac[/tex]
[tex]D=(-1)^2-4(1)(-2)\\D=1+8\\D=9[/tex]
As D is >0 so we will get two values of x
and two values of y corresponding to values of x
By solving given equation and then finding discriminant we get that this system of equations have 2 solutions
To know more about quadratic equations visit: https://brainly.com/question/2263981