Respuesta :

Answer:

7. parallel:  k = 3

   perpendicular:  k = -4/3

8. $1300

Step-by-step explanation:

7.

Rewrite each equation as the slope-intercept form of a linear equation:

y = mx + b (where m is the slope and b is the y-intercept)

  8y = 12x + 6

⇒ [tex]y=\dfrac32x+\dfrac34[/tex]

   4y = k(2x + 10)

⇒ 4y = 2kx + 10k

⇒ [tex]y = \dfrac12kx + \dfrac52k[/tex]

If the graphs are parallel their slopes will be the same.

[tex]\implies \dfrac32=\dfrac12k[/tex]

[tex]\implies k=3[/tex]

If the graphs are perpendicular then the product of their slopes will be -1.

[tex]\implies \dfrac32 \times \dfrac12k=-1[/tex]

[tex]\implies \dfrac12k=-\dfrac23[/tex]

[tex]\implies k=-\dfrac43[/tex]

8. Create a linear equation, where x is the number of coffee mugs and y is the total cost (in dollars).

Choose 2 ordered pairs from the table:  (10, 110) and (20, 195)

Let [tex](x_1,y_1)[/tex] = (10, 110)

Let [tex](x_2,y_2)[/tex] = (20, 195)

Use the slope formula to find the slope m:

[tex]\implies m=\dfrac{y_2-y_1}{x_2-x_1}=\dfrac{195-110}{20-10}=\dfrac{17}{2}[/tex]

Now use the point-slope form of linear equation:

[tex]\implies y-y_1=m(x-x_1)[/tex]

[tex]\implies y-110=\dfrac{17}{2}(x-10)[/tex]

[tex]\implies y=\dfrac{17}{2}x+25[/tex]

Substitute x = 150 into the equation and solve for y:

[tex]\implies y=\dfrac{17}{2}(150)+25=1300[/tex]

Therefore, the total cost of ordereing 150 mugs is $1300

RELAXING NOICE
Relax