Respuesta :

Answer:

  ln(x)/2 -3.810930

Step-by-step explanation:

The relevant rules of logarithms are ...

  ln(ab) = ln(a) +ln(b)

  ln(a^b) = b·ln(a)

  ln(a/b) = ln(a) -ln(b)

  ln(e) = 1

__

Your expression expands to ...

  [tex]\ln\left(\dfrac{4\sqrt{x}}{9e^3}\right) = \ln(4\sqrt{x})-\ln(9e^3)=\ln(4)+\dfrac{1}{2}\ln(x)-(\ln(9)+3\ln(e))\\\\=\dfrac{1}{2}\ln(x)+\ln(4)-\ln(9)-3\\\\\approx\dfrac{\ln(x)}{2}-3.810930[/tex]