Respuesta :
[tex](\stackrel{x_1}{3}~,~\stackrel{y_1}{6})\qquad \qquad \stackrel{slope}{m}\implies 7 \\\\\\ \begin{array}{|c|ll} \cline{1-1} \textit{point-slope form}\\ \cline{1-1} \\ y-y_1=m(x-x_1) \\\\ \cline{1-1} \end{array}\implies y-\stackrel{y_1}{6}=\stackrel{m}{7}(x-\stackrel{x_1}{3})[/tex]
Answer:
[tex]y=7x-15[/tex]
Step-by-step explanation:
Given the following question:
Point A = (3, 6) = (x1, y1)
m (slope) = 7
We will find the equation of this line by finding the slope intercept.
[tex]y=mx+b[/tex]
[tex]y=6[/tex]
[tex]m=7[/tex]
[tex]x=3[/tex]
[tex]6=7(3)+b[/tex]
[tex]7\times3=21[/tex]
[tex]21-21=0[/tex]
[tex]6-21=-15[/tex]
[tex]b=-15[/tex]
[tex]y=7x-15[/tex]
Hope this helps.