Respuesta :

Answer:

[tex]\frac{3x}{(x-3)(x+1)}[/tex]

Step-by-step explanation:

[tex]\frac{2x-1}{x^2-2x-3}[/tex] + [tex]\frac{1}{x-3}[/tex]

= [tex]\frac{2x-1}{(x-3)(x+1)}[/tex] + [tex]\frac{1}{x-3}[/tex]

multiply the numerator/ denominator of 2nd fraction by (x + 1)

= [tex]\frac{2x-1}{(x-3)(x+1)}[/tex] + [tex]\frac{x+1}{(x-3)(x+1)}[/tex]

add the numerators , leaving the common denominator

= [tex]\frac{2x-1+x+1}{(x-3)(x+1)}[/tex]

= [tex]\frac{3x}{(x-3)(x+1)}[/tex]

Answer:

A) (x+1)(x-3)

B) 3x / x^2 - 2x - 3

or (3x ÷ x^2 - 2x - 3)

Hope this helps!

ACCESS MORE