Respuesta :
Answer:The wavelength of a photon with energy 3.0 eV is 413.57 nm and it is for visible light. This wavelength is of ultraviolet light.
Explanation:
We are given –
- Energy of photon is = 3 eV
To find the wavelength of photon we have to use the Planck Expression.
[tex]\qquad[/tex] [tex]\star\: \: \pink{\boxed{\frak{ E = hf}}}[/tex]
[tex]\qquad[/tex][tex] \bf \longrightarrow E = hf [/tex]
[tex]\qquad[/tex][tex] \sf \longrightarrow E = h \times \dfrac{c}{\lambda} \: \: \purple{\bigg(\because f = \dfrac{c}{\lambda}\bigg)}[/tex]
Where, E is the energy of photon and f is the frequency of photon & h's called Planck Constant.
[tex]\qquad[/tex][tex] \sf \longrightarrow h = 6.63\times 10^{-34} \:Js[/tex]
[tex]\qquad[/tex] Speed of light, c =[tex]\sf 3\times10^{8} \:m/s[/tex]
[tex]\qquad\qquad\quad\underline{\sf{Substituting \ Values \ :}}[/tex]
⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━
[tex]\qquad[/tex][tex] \bf \longrightarrow E = h \times \dfrac{c}{\lambda} [/tex]
[tex]\qquad[/tex][tex] \bf \longrightarrow \lambda = \dfrac{hc}{E}[/tex]
[tex]\qquad[/tex][tex] \sf \longrightarrow \lambda = \dfrac{ 6.63\times 10^{-34}\times 3\times 10^{8}}{ 3eV}[/tex]
[tex]\qquad[/tex][tex] \sf \longrightarrow \lambda = \dfrac{ 6.63\times 10^{-34}\times 3\times 10^{8}}{ 3 \times 1.6\times 10^{-19}}\: \:\purple{ \bigg(\because 1 eV= 1.6\times 10^{-19} J\bigg)}[/tex]
[tex]\qquad[/tex][tex] \sf \longrightarrow \lambda = \dfrac{ 6.63 \times \cancel{3}\times 10^{-34+8}}{\cancel{3}\times 1.6\times 10^{-19}}[/tex]
[tex]\qquad[/tex][tex] \sf \longrightarrow \lambda = \dfrac{ 6.63 \times 10^{-26}}{1.6\times 10^{-19}}[/tex]
[tex]\qquad[/tex][tex] \sf \longrightarrow \lambda = 4.144 \times 10^{-26+19}[/tex]
[tex]\qquad[/tex][tex] \sf \longrightarrow \lambda = 4.144 \times 10^{-7}[/tex]
[tex]\qquad[/tex][tex] \sf \longrightarrow \lambda = 4.144\times 10^{-7}\: m[/tex]
[tex]\qquad[/tex][tex] \sf \longrightarrow \lambda = 4.144 \times 10^{-7}\times 10^{9} \: nm\: \: \purple{\bigg(\because 1m = 10^9\: nm \bigg)}[/tex]
[tex]\qquad[/tex][tex] \sf \longrightarrow \lambda = 4.144 \times 10^{-7+9}\: nm[/tex]
[tex]\qquad[/tex][tex] \sf \longrightarrow \lambda = 4.144 \times 10^{2}\: nm[/tex]
[tex]\qquad[/tex][tex] \pink{\bf \longrightarrow \lambda = 414.4\: nm}[/tex]
- Henceforth, wavelength will be 414.4nm.