Find the perimeter and total area of the compositor shape shown below. All measurements are given in inches.
![Find the perimeter and total area of the compositor shape shown below All measurements are given in inches class=](https://us-static.z-dn.net/files/d43/5ef424036a02a377e879f8b3dfd28fb2.png)
[tex]\bold{\huge{\pink{\underline{ Solution }}}}[/tex]
We have given one composite which is composed of hemisphere and triangle
We know that,
Perimeter of hemisphere
[tex]\bold{\red{ = }}{\bold{\red{\pi{r}}}}[/tex]
Perimeter of the triangle
[tex]\bold{\pink{ = S + S + S }}[/tex]
[ Both the figures have common base area ]
Total perimeter of the composite solid
[tex]\sf{ = 5 + 5 + }{\sf{\dfrac{22}{7}}}{\sf{\times{r}}}[/tex]
[tex]\sf{ = 10 + }{\sf{\dfrac{22}{7}}}{\sf{\times{3}}}[/tex]
[tex]\sf{ = 10 + }{\sf{\dfrac{66}{7}}}[/tex]
[tex]\sf{ = }{\sf{\dfrac{70 + 66}{7}}}[/tex]
[tex]\sf{ = }{\sf{\dfrac{136}{7}}}[/tex]
[tex]\bold{ = 19.42\: inches }[/tex]
Thus, The perimeter of the composite solid is 19.42 inches
We have to find the area of composite solid
We know that,
Area of hemisphere
[tex]\bold{\blue{ = }}{\bold{\blue{\dfrac{1}{2}}}}{\bold{\blue{\pi{r²}}}}[/tex]
[tex]\sf{ = 0.5}{\sf{\times{\dfrac{22}{7}}}}{\sf{\times{ 3 }}}{\sf{\times{ 3 }}}[/tex]
[tex]\sf{ = 0.5}{\sf{\times}}{\sf{\dfrac{22}{7}}}{\sf{\times{ 9 }}}[/tex]
[tex]\sf{ = 0.5}{\sf{\times{\dfrac{198}{7}}}}[/tex]
[tex]\sf{ = }{\sf{\dfrac{99}{7}}}[/tex]
[tex]\bold{ = 14.14\: inches }[/tex]
We also know that,
Area of triangle
[tex]\bold{\purple{ = }}{\bold{\purple{\dfrac{1}{2}}}}{\bold{\purple{\times{ Base}}}}{\bold{\purple{\times{height }}}}[/tex]
Subsitute the required values,
[tex]\sf{ = }{\sf{\dfrac{1}{2}}}{\sf{\times{ 4 }}}{\sf{\times{3}}}[/tex]
[tex]\sf{ = 2 }{\sf{\times{ 3 }}}[/tex]
[tex]\bold{ = 6\: inches }[/tex]
Total Area of the composite solid
[tex]\sf{ = 14.14 + 6}[/tex]
[tex]\bold{\red{ = 20.14\: inches }}[/tex]
Hence, The perimeter and area of composite solid is 19.42 inches and 20.14 inches .