Respuesta :

[tex]\bold{\huge{\pink{\underline{ Solution }}}}[/tex]

Given :-

  • The radius of the hemisphere is 3 units
  • The height of the hemisphere is 3 units
  • The height of the triangle is 4 units
  • The other two sides of triangle is 5 units each

To Find :-

  • We have to find the area and perimeter of the composite solid ?

Let's Begin :-

We have given one composite which is composed of hemisphere and triangle

We know that,

Perimeter of hemisphere

[tex]\bold{\red{ = }}{\bold{\red{\pi{r}}}}[/tex]

Perimeter of the triangle

[tex]\bold{\pink{ = S + S + S }}[/tex]

[ Both the figures have common base area ]

Therefore,

Total perimeter of the composite solid

[tex]\sf{ = 5 + 5 + }{\sf{\dfrac{22}{7}}}{\sf{\times{r}}}[/tex]

[tex]\sf{ = 10 + }{\sf{\dfrac{22}{7}}}{\sf{\times{3}}}[/tex]

[tex]\sf{ = 10 + }{\sf{\dfrac{66}{7}}}[/tex]

[tex]\sf{ = }{\sf{\dfrac{70 + 66}{7}}}[/tex]

[tex]\sf{ = }{\sf{\dfrac{136}{7}}}[/tex]

[tex]\bold{ = 19.42\: inches }[/tex]

Thus, The perimeter of the composite solid is 19.42 inches

Now,

We have to find the area of composite solid

We know that,

Area of hemisphere

[tex]\bold{\blue{ = }}{\bold{\blue{\dfrac{1}{2}}}}{\bold{\blue{\pi{r²}}}}[/tex]

[tex]\sf{ = 0.5}{\sf{\times{\dfrac{22}{7}}}}{\sf{\times{ 3 }}}{\sf{\times{ 3 }}}[/tex]

[tex]\sf{ = 0.5}{\sf{\times}}{\sf{\dfrac{22}{7}}}{\sf{\times{ 9 }}}[/tex]

[tex]\sf{ = 0.5}{\sf{\times{\dfrac{198}{7}}}}[/tex]

[tex]\sf{ = }{\sf{\dfrac{99}{7}}}[/tex]

[tex]\bold{ = 14.14\: inches }[/tex]

We also know that,

Area of triangle

[tex]\bold{\purple{ = }}{\bold{\purple{\dfrac{1}{2}}}}{\bold{\purple{\times{ Base}}}}{\bold{\purple{\times{height }}}}[/tex]

Subsitute the required values,

[tex]\sf{ = }{\sf{\dfrac{1}{2}}}{\sf{\times{ 4 }}}{\sf{\times{3}}}[/tex]

[tex]\sf{ = 2 }{\sf{\times{ 3 }}}[/tex]

[tex]\bold{ = 6\: inches }[/tex]

  • [Note :- Both the figures have common base area. So for triangle base area will be 6/2 = 3 in.]

Therefore,

Total Area of the composite solid

[tex]\sf{ = 14.14 + 6}[/tex]

[tex]\bold{\red{ = 20.14\: inches }}[/tex]

Hence, The perimeter and area of composite solid is 19.42 inches and 20.14 inches .