Please help 50 points mark brainliest
![Please help 50 points mark brainliest class=](https://us-static.z-dn.net/files/d68/6bb6c7fdb58f58044d48a518672e2435.png)
y=∣x−1∣={
1−x
x−1
x<1
x≥1
}
Similarly y=3−∣x∣={
3+x
3−x
x<0
x≥0
}
The required region is a rectangle with length 2
2
and breadth
2
.
Hence, the area is 4. Hence, all the options are correct
Answer:
a) area = 2 -ln(3)
b) volume = 2π(4/3 -ln(3))
Step-by-step explanation:
The area under the curve is the definite integral of the function between the given limits. The integral is made easier if we rewrite the function first:
y = ((x +1) -1)/(x +1) = 1 -1/(x +1)
[tex]\displaystyle A=\int_0^2{y}\,dx=\int_0^2{1}\,dx-\int_0^2{\dfrac{1}{x+1}}\,dx\\\\=\left.(x-\ln{(x+1)})\right|_{x=0}^{x=2}=\boxed{2-\ln(3)}[/tex]
__
The volume of revolution is the integral of the differential volumes. Each such differential volume can be considered a disc of radius y and a thickness of dx.
[tex]\displaystyle V=\int_0^2{\pi y^2}\,dx=\pi\int_0^2{\left(1-\dfrac{2}{x+1}+\dfrac{1}{(x+1)^2}\right)}\,dx\\\\=\left.\pi\left(x-2\ln(x+1)-\dfrac{1}{x+1}\right)\right|_{x=0}^{x=2}=\pi\left(2-2\ln{(3)}+\dfrac{2}{3}\right)\\\\=\boxed{2\pi\left(\dfrac{4}{3}-\ln(3)\right)}[/tex]
_____
The numerical values of area and volume are shown in the attachment.