Find the value of the length x rounded to 1 DP.

Answer:
x = 13.6 cm
Step-by-step explanation:
part A:
using tan rule:
[tex]tan(x) = \frac{opposite}{adjacent}[/tex]
[tex]tan(39) = \frac{6}{adjacent}[/tex]
[tex]adjacent = \frac{6}{tan(39)}[/tex]
[tex]adjacent = 7.41[/tex]
part B:
using tan rule:
[tex]tan(x) = \frac{opposite}{adjacent}[/tex]
[tex]tan(44) = \frac{6}{adjacent}[/tex]
[tex]adjacent = 6.213[/tex]
Total length of x:
part A + part B
[tex]7.41 + 6.213[/tex]
[tex]13.6[/tex] cm
Answer:
x = 13.6 (1 dp)
Step-by-step explanation:
Using the following trig ratio to calculate the base of each triangle:
[tex]tan(\theta)=\dfrac{O}{A}[/tex]
where [tex]\theta[/tex] is the angle, O is the side opposite the angle and A is the side adjacent to the angle.
Left triangle
Given:
[tex]\implies tan(39) = \dfrac{6}{x_1}[/tex]
[tex]\implies x_1 = \dfrac{6}{tan(39)}[/tex]
Right triangle
Given:
[tex]\implies tan(44) = \dfrac{6}{x_2}[/tex]
[tex]\implies x_2 = \dfrac{6}{tan(44)}[/tex]
Length of x
[tex]x = x_1+x_2[/tex]
[tex]\implies x=\dfrac{6}{tan(39)}+\dfrac{6}{tan(44)}[/tex]
[tex]\implies x=13.6[/tex] (1 dp)