In a right angle the hypotenuse is Xcm Adjacent is y cm while the opposite is Z cm , the length of the hypotenuse is X cm , is given by the formula X=√x^2+y^2
a) Find the value of x when y = 2 1/2 and z = 6cm
b) Find the value of y when X = 16 and X^2 = 60

Respuesta :

Answer:

It appears that there may be a typo in the original question, as if:

  • y is the adjacent
  • z is the opposite
  • X is the hypotenuse

of a right triangle, then using Pythagoras' Theorem:

[tex]y^2+z^2=X^2[/tex]

[tex]\implies X=\sqrt{y^2+z^2}[/tex]

a) Given:

  • [tex]y=2 \dfrac12=2.5[/tex]  
  • [tex]z=6[/tex]

And using [tex]X=\sqrt{y^2+z^2}[/tex] :

[tex]\implies X=\sqrt{2.5^2+6^2}[/tex]

[tex]\implies X=\sqrt{42.25}[/tex]

[tex]\implies X=\dfrac{13}{2}[/tex]

b) Given:

  • [tex]X=16[/tex]
  • [tex]z^2=60[/tex]

And using  [tex]X=\sqrt{y^2+z^2}[/tex] :

[tex]\implies 16=\sqrt{y^2+60}[/tex]

[tex]\implies 256=y^2+60[/tex]

[tex]\implies 196=y^2[/tex]

[tex]\implies y=14[/tex]

ACCESS MORE