Answer:
[tex]x = \frac{1}{e} [/tex]
Step-by-step explanation:
[tex]f(x) = {(lnx)}^{2} [/tex]
[tex]f1st(x) = \frac{2 lnx }{x} = 0[/tex]
[tex]x < 1 \: \: f1 < 0 \: \: de creasing[/tex]
[tex]f2nd(x) = \frac{2 - 2 lnx}{ {x}^{2} } = 0[/tex]
[tex]x < e \: \: f2 > 0 \: \: concave \: up[/tex]
So x<1 is the condition which contains x=1/e