Respuesta :

Answer:

[tex]y = i[/tex]

[tex]x = 1[/tex]

Step-by-step explanation:

-------------------------------------------------------

Make [tex]x[/tex] the subject for  [tex]ix-2y=-i[/tex] :

-------------------------------------------------------

Add 2y to both sides:  

[tex]\implies ix=-i+2y[/tex]

Divide both sides by i:

[tex]\implies x=\dfrac{-i+2y}{i}[/tex]

To remove i from the denominator, multiply the numerator and denominator by its complex conjugate:

[tex]\implies x=\dfrac{-i+2y}{i} \times\dfrac{-i}{-i}[/tex]

[tex]\implies x=\dfrac{i^2-2iy}{-i^2}[/tex]

Apply the imaginary number rule  [tex]i^2=-1[/tex] :

[tex]\implies x=\dfrac{-1-2iy}{-(-1)}[/tex]

[tex]\implies x=\dfrac{-1-2iy}{1}[/tex]

[tex]\implies x=-1-2iy[/tex]

-----------------------------------------------------------------------------------------------

Substitute  [tex]x=-1-2iy[/tex]  into  [tex](1+i)x-2iy=3+i[/tex]  and make y the subject:

-----------------------------------------------------------------------------------------------

[tex]\implies (1+i)(-1-2iy)-2iy=3+i[/tex]

Apply complex arithmetic rule [tex](a+bi)(c+di)=(ac-bd)+(ad+bc)i[/tex] :

[tex]\implies (-1+2y)+(-2y-1)i-2iy=3+i[/tex]

Simplify:

[tex]\implies -1+2y-2iy-i-2iy=3+i[/tex]

[tex]\implies 2y-4iy=4+2i[/tex]

Factor:

[tex]\implies 2(1-2i)y=2(2+i)[/tex]

Divide both sides by [tex]2(1-2i)[/tex] :

[tex]\implies \dfrac{2(1-2i)y}{2(1-2i)}=\dfrac{2(2+i)}{2(1-2i)}[/tex]

[tex]\implies y=\dfrac{(2+i)}{(1-2i)}[/tex]

Multiply by the complex conjugate [tex]\dfrac{1+2i}{1+2i}[/tex] to remove [tex](1 - 2i)[/tex] from the denominator :

[tex]\implies y=\dfrac{(2+i)(1+2i)}{(1-2i)(1+2i)}[/tex]

Apply complex arithmetic rule [tex](a+bi)(c+di)=(ac-bd)+(ad+bc)i[/tex]  to numerator:

[tex]\implies y=\dfrac{(2-2)+(4+1)i}{(1-2i)(1+2i)}[/tex]

[tex]\implies y=\dfrac{5i}{(1-2i)(1+2i)}[/tex]

Apply complex arithmetic rule  [tex](a+bi)(a-bi)=a^2+b^2[/tex] to the denominator :

[tex]\implies y=\dfrac{5i}{1^2+2^2}[/tex]

[tex]\implies y=\dfrac{5i}{5}[/tex]

[tex]\implies y=i[/tex]

Therefore, one solution is [tex]y=i[/tex]

For the other solution, substitute  [tex]y=i[/tex]  into  [tex]x=-1-2iy[/tex]:

[tex]\implies x=-1-2ii[/tex]

[tex]\implies x=-1-2i^2[/tex]

Apply the imaginary number rule  [tex]i^2=-1[/tex] :

[tex]\implies x=-1-2(-1)[/tex]

[tex]\implies x=-1+2[/tex]

[tex]\implies x=1[/tex]

Therefore, the second solution is [tex]x = 1[/tex]

RELAXING NOICE
Relax