Respuesta :
Answer:
k = 9
length of chord = 2/3
Step-by-step explanation:
Equation of parabola: [tex]y=k (x-\frac13)^2[/tex]
Part 1
If the curve passes through point [tex](\frac23 ,1)[/tex], this means that when [tex]x=\dfrac23[/tex], [tex]y = 1[/tex]
Substitute these values into the equation and solve for [tex]k[/tex]:
[tex]\implies 1=k \left(\dfrac23-\dfrac13\right)^2[/tex]
[tex]\implies 1=k \left(\dfrac13 \right)^2[/tex]
Apply the exponent rule [tex]\left(\dfrac{a}{b} \right)^c=\dfrac{a^c}{b^c}[/tex] :
[tex]\implies 1=k \left(\dfrac{1^2}{3^2} \right)[/tex]
[tex]\implies 1=\dfrac{1}{9}k[/tex]
[tex]\implies k=9[/tex]
Part 2
- The chord of a parabola is a line segment whose endpoints are points on the parabola.
We are told that one end of the chord is at [tex](\frac23 ,1)[/tex] and that the chord is horizontal. Therefore, the y-coordinate of the other end of the chord will also be 1. Substitute y = 1 into the equation for the parabola and solve for x:
[tex]\implies 1=9 \left(x-\dfrac13 \right)^2[/tex]
[tex]\implies \dfrac19 = \left(x-\dfrac13 \right)^2[/tex]
[tex]\implies \sqrt{\dfrac19} = x-\dfrac13[/tex]
[tex]\implies \pm \dfrac13 = x-\dfrac13[/tex]
[tex]\implies x=\dfrac23, x=0[/tex]
Therefore, the endpoints of the horizontal chord are: (0, 1) and (2/3, 1)
To calculate the length of the chord, find the difference between the x-coordinates:
[tex]\implies \dfrac23-0=\dfrac23[/tex]
**Please see attached diagram for drawn graph. Chord is in red**
![Ver imagen semsee45](https://us-static.z-dn.net/files/d41/0ee4c16c235eb1e47177d0116452eef8.png)