[tex] \rm \bold{ If \: f ( x ) = tan \: x , \: Then \: Show \: That \: f (2x) = \frac{2f(x)}{1 -[f(x)] } }[/tex]






⭐Thenku ~​

Respuesta :

[tex]\qquad \sf  \: \huge \bf༆ Answer ༄[/tex]

Here's the solution ~

[tex]\qquad \sf  \dashrightarrow \: f(x) = \tan(x) [/tex]

[tex]\qquad \sf  \dashrightarrow \: f(2x) = \tan(2x) [/tex]

[tex]\qquad \sf  \dashrightarrow \: f(2x) = \dfrac{2 \tan(x) }{1 - { \tan {}^{2} (x) }^{} } [/tex]

replace tan(x) with f(x) in the given equation ~

[tex]\qquad \sf  \dashrightarrow \: f(2x) = \dfrac{2 (f(x) )}{1 - { (f {}^{} (x)) {}^{2} }^{} } [/tex]

The expression that was proved is [tex]tan2x=\frac{2[f(x)]}{1-[f(x)^2]}[/tex]

Double angle of function

Given the trigonometry identity

f(x) = tanx

f(2x)  tan2x

From double angle theorem;

[tex]tan2x=\frac{tanx+tanx}{1-tanx(tanx)} \\tan2x=\frac{2tanx}{1-tan^2x}[/tex]

Since f(x) = tan(x), substitute into the result to have:

[tex]tan2x=\frac{2[f(x)]}{1-[f(x)^2]}[/tex] (Proved)

Learn more on double angle here: https://brainly.com/question/14691

ACCESS MORE