[tex] \bf \: If \: f(t) = 50 sin ( 100 π + 0.4 ) Then \: \: ST \: \: f( \frac{1}{50} + 1) = f(t) [/tex]

‎ ‎
‎ ‎
‎ ‎
‎ ‎

‎ ‎
‎ ‎
‎ ‎ ‎ ‎ ‎‎ ‎ ‎ ‎ ‎‎ ‎ ‎ ‎ ‎‎ ‎ ‎ ‎ ‎‎ ‎ ‎ ‎ ‎‎ ‎ ‎ ‎ ‎
Thank You! :)

Respuesta :

PROOF

Here it is given that

[tex]\displaystyle \sf{f(t) = 50 \: \sin(100\pi t+ 0.4)}[/tex]

Now

[tex]\displaystyle \sf{f \bigg( \frac{1}{50} + t \bigg) }[/tex]

[tex]\displaystyle \sf{ = 50 \: \sin \Bigg[100\pi \bigg( \frac{1}{50} + t \bigg)+ 0.4 \Bigg] }[/tex]

[tex]\displaystyle \sf{ = 50 \: \sin \Bigg[ \bigg(100\pi \times \frac{1}{50} + 100\pi t \bigg)+ 0.4 \Bigg] }[/tex]

[tex]\displaystyle \sf{ = 50 \: \sin \Bigg[ \bigg(2\pi + 100\pi t \bigg)+ 0.4 \Bigg] } \\ \\ \displaystyle \sf{ = 50 \: \sin ( 100\pi t + 0.4 ) }[/tex]

[tex]\sf{ = f(t)}[/tex]

Hence proved

━━━━━━━━━━━━━━━━

Lanuel

Based on the proof, the function [tex]f(\frac{1}{50} +t)[/tex] is equal to f(t).

What is a function?

A function can be defined as a mathematical expression that defines and represents the relationship between two or more variable.

Given the following function:

  • [tex]f(t)=50sin(100 \pi t+0.4)[/tex]

In this exercise, you are required to show that the given function is equal to [tex]f(\frac{1}{50} +t)[/tex].

Substituting for t, we have:

[tex]f(\frac{1}{50} +t)=50sin(100 \pi (\frac{1}{50} +t)+0.4)\\\\f(\frac{1}{50} +t)=50sin( \frac{100 \pi}{50} +100 \pi t+0.4)\\\\f(\frac{1}{50} +t)=50sin(100 \pi t+0.4)\\\\f(\frac{1}{50} +t)=f(t)[/tex]

Read more on function here: https://brainly.com/question/4246058

RELAXING NOICE
Relax