Respuesta :
PROOF
Here it is given that
[tex]\displaystyle \sf{f(t) = 50 \: \sin(100\pi t+ 0.4)}[/tex]
Now
[tex]\displaystyle \sf{f \bigg( \frac{1}{50} + t \bigg) }[/tex]
[tex]\displaystyle \sf{ = 50 \: \sin \Bigg[100\pi \bigg( \frac{1}{50} + t \bigg)+ 0.4 \Bigg] }[/tex]
[tex]\displaystyle \sf{ = 50 \: \sin \Bigg[ \bigg(100\pi \times \frac{1}{50} + 100\pi t \bigg)+ 0.4 \Bigg] }[/tex]
[tex]\displaystyle \sf{ = 50 \: \sin \Bigg[ \bigg(2\pi + 100\pi t \bigg)+ 0.4 \Bigg] } \\ \\ \displaystyle \sf{ = 50 \: \sin ( 100\pi t + 0.4 ) }[/tex]
[tex]\sf{ = f(t)}[/tex]
Hence proved
━━━━━━━━━━━━━━━━
Based on the proof, the function [tex]f(\frac{1}{50} +t)[/tex] is equal to f(t).
What is a function?
A function can be defined as a mathematical expression that defines and represents the relationship between two or more variable.
Given the following function:
- [tex]f(t)=50sin(100 \pi t+0.4)[/tex]
In this exercise, you are required to show that the given function is equal to [tex]f(\frac{1}{50} +t)[/tex].
Substituting for t, we have:
[tex]f(\frac{1}{50} +t)=50sin(100 \pi (\frac{1}{50} +t)+0.4)\\\\f(\frac{1}{50} +t)=50sin( \frac{100 \pi}{50} +100 \pi t+0.4)\\\\f(\frac{1}{50} +t)=50sin(100 \pi t+0.4)\\\\f(\frac{1}{50} +t)=f(t)[/tex]
Read more on function here: https://brainly.com/question/4246058
