I need to use multi-step inverses with logs:
![I need to use multistep inverses with logs class=](https://us-static.z-dn.net/files/d39/0ad39e43697d995c9b6cf61d465e4105.png)
Answer:
[tex]f^{-1}(x)= \:\log _7\left(\left(8x-1\right)^3\right)[/tex]
Explanation:
[tex]f(x) = \frac{(7^x)^{\frac{1}{3} }+1}{8}[/tex]
Let f(x) be y
[tex]y = \frac{(7^x)^{\frac{1}{3} }+1}{8}[/tex]
exchange x and y
[tex]x = \frac{(7^y)^{\frac{1}{3} }+1}{8}[/tex]
simplify
[tex]8x= {(7^y)^{\frac{1}{3} }+1}[/tex]
simplify
[tex]8x - 1 = 7^{\frac{y}{3} }[/tex]
simplify
[tex]8x - 1 = \sqrt[3]{7^y}[/tex]
simplify
[tex](8x-1)^3 = 7^y[/tex]
apply log rules
[tex]y = \frac{log((8x-1)^3 )}{log(7)}[/tex]
[tex]y = \:\log _7\left(\left(8x-1\right)^3\right)[/tex]
therefore
[tex]f^{-1}(x)= \:\log _7\left(\left(8x-1\right)^3\right)[/tex]