Respuesta :
Hi there!
a)
We can begin by using the equation for energy density.
[tex]U = \frac{1}{2}\epsilon_0 E^2[/tex]
U = Energy (J)
ε₀ = permittivity of free space
E = electric field (V/m)
First, derive the equation for the electric field using Gauss's Law:
[tex]\Phi _E = \oint E \cdot dA = \frac{Q_{encl}}{\epsilon_0}[/tex]
Creating a Gaussian surface being the lateral surface area of a cylinder:
[tex]A = 2\pi rL\\\\E \cdot 2\pi rL = \frac{Q_{encl}}{\epsilon_0}\\\\Q = \lambda L\\\\E \cdot 2\pi rL = \frac{\lambda L}{\epsilon_0}\\\\E = \frac{\lambda }{2\pi r \epsilon_0}[/tex]
Now, we can calculate the energy density using the equation:
[tex]U = \frac{1}{2} \epsilon_0 E^2[/tex]
Plug in the expression for the electric field and solve.
[tex]U = \frac{1}{2}\epsilon_0 (\frac{\lambda}{2\pi r \epsilon_0})^2\\\\U = \frac{\lambda^2}{8\pi^2r^2\epsilon_0}[/tex]
b)
Now, we can integrate over the volume with respect to the radius.
Recall:
[tex]V = \pi r^2L \\\\dV = 2\pi rLdr[/tex]
Now, we can take the integral of the above expression. Let:
[tex]r_i[/tex] = inner cylinder radius
[tex]r_o[/tex] = outer cylindrical shell inner radius
Total energy-field energy:
[tex]U = \int\limits^{r_o}_{r_i} {U_D} \, dV = \int\limits^{r_o}_{r_i} {2\pi rL *U_D} \, dr[/tex]
Plug in the equation for the electric field energy density and solve.
[tex]U = \int\limits^{r_o}_{r_i} {2\pi rL *\frac{\lambda^2}{8\pi^2r^2\epsilon_0}} \, dr\\\\U = \int\limits^{r_o}_{r_i} { L *\frac{\lambda^2}{4\pi r\epsilon_0}} \, dr\\[/tex]
Bring constants in front and integrate. Recall the following integration rule:
[tex]\int {\frac{1}{x}} \, dx = ln(x) + C[/tex]
Now, we can solve!
[tex]U = \frac{\lambda^2 L}{4\pi \epsilon_0}\int\limits^{r_o}_{r_i} { \frac{1}{r}} \, dr\\\\\\U = \frac{\lambda^2 L}{4\pi \epsilon_0} ln(r)\left \| {{r_o} \atop {r_i}} \right. \\\\U = \frac{\lambda^2 L}{4\pi \epsilon_0} (ln(r_o) - ln(r_i))\\\\U = \frac{\lambda^2 L}{4\pi \epsilon_0} ln(\frac{r_o}{r_i})[/tex]
To find the total electric field energy per unit length, we can simply divide by the length, 'L'.
[tex]\frac{U}{L} = \frac{\lambda^2 L}{4\pi \epsilon_0} ln(\frac{r_o}{r_i})\frac{1}{L} \\\\\frac{U}{L} = \boxed{\frac{\lambda^2 }{4\pi \epsilon_0} ln(\frac{r_o}{r_i})}[/tex]
And here's our equation!