Respuesta :
Answer:
Step-by-step explanation:
Perimeter of a sector
The circumference of a circle is 2 pi r.
pi = 3.14
r = 21 cm
The angle of this particular sector is 60 degrees.
So the formula for this sector is P = 2*r + 60/360 * 2* pi * r
Now all you need do is plug the numbers in.
P = 2 * 21 + 1/6 * 2 * 3.14 * 21
P = 42 + 21.98
P = 63.98
Area of the sector
Area of a circle = pi * r^2
Area of a sector = theta / 360 * pi * r^2
theta = 60 degrees
area of this sector = (60/360) * 3.14 * 21^2
Area of this sector = (1/6) * 3.14 * 441
Area of this sector = 230.79
[tex]\bold{\huge{\pink{\underline{ Solution }}}}[/tex]
Given :-
- We have given that, Angle AOB is 60°
- The radius of the circle is 21cm
To Find :-
- We have to find the area and perimeter of the sector OAB
Let's Begin :-
We have ,
- Two radii of the circle OA and OB = 21 cm each
- [tex]\bold{\angle{ AOB = 60° }}[/tex]
- AB is the segment of the circle
We know that,
[ Perimeter of sector = Arc length + radius + radius ]
[tex]\bold{\blue{ Perimeter \: of \: Sector = }}{\bold{\blue{\dfrac{\theta}{360°}}}}{\bold{\blue{× 2πr + r + r }}}[/tex]
Subsitute the required values in the above formula :-
Length of the arc of OAB
[tex]\sf{=}{\sf{\dfrac{ 60°}{360°}}}{\sf{×2πr + 2r }}[/tex]
[tex]\sf{=}{\sf{\dfrac{ 6}{36}}}{\sf{×2×21π + 2 × 21 }}[/tex]
[tex]\sf{= }{\sf{\dfrac{1}{6}}}{\sf{ × }}{\sf{\dfrac{22}{7}}}{\sf{× 42 + 42 }}[/tex]
[tex]\sf{= }{\sf{\dfrac{1}{3}}}{\sf{ × }}{\sf{\dfrac{11}{7}}}{\sf{ × 42 + 42 }}[/tex]
[tex]\sf{= }{\sf{\dfrac{1}{3}}}{\sf{× 11×6 + 42 }}[/tex]
[tex]\sf{ = 11 × 2 + 42 }[/tex]
[tex]\sf{= 22 + 42 }[/tex]
[tex]\bold{\red{= 64 \: cm}}[/tex]
Thus, The perimeter of the sector OAB is 64 cm
Now,
We have to find the area of sector OAB
We know that,
[tex]\bold{\blue{ Area \: of \: sector = }}{\bold{\blue{\dfrac{\theta}{360°}}}}{\bold{\blue{× πr² }}}[/tex]
Subsitute the required values in the above formula :-
Area of sector OAB
[tex]\sf{=}{\sf{\dfrac{60°}{360°}}}{\sf{× πr² }}[/tex]
[tex]\sf{=}{\sf{\dfrac{6}{36}}}{\sf{× π × 21 × 21 }}[/tex]
[tex]\sf{=}{\sf{\dfrac{1}{6}}}{\sf{× π × 21 × 21 }}[/tex]
[tex]\sf{=}{\sf{\dfrac{1 }{6}}}{\sf{× 441π}}[/tex]
[tex]\sf{=}{\sf{\dfrac{1}{6}}}{\sf{× 441 × }}{\sf{\dfrac{22}{7}}}[/tex]
[tex]\sf{=}{\sf{\dfrac{1}{6}}}{\sf{ × 63 × 22}}[/tex]
[tex]\sf{=}{\sf{\dfrac{1}{6}}}{\sf{× 1386 }}[/tex]
[tex]\bold{\red{= 231 \: cm²}}[/tex]
Hence, The area and perimeter of the sector OAB is 64 cm and 231cm²
What is sector?
- Sector is nothing but the portion covered by the two radii of the circle
- For example, In the given circle
- OAB is sector as it is enclosed by two radii OA and OB.
![Ver imagen Starrysoul100](https://us-static.z-dn.net/files/dc3/ba0c0b3f4ba8230811fdd4b31e2243fa.jpg)