The two triangles are similar.
What is the value of x?
Enter your answer in the box.
X=
![The two triangles are similar What is the value of x Enter your answer in the box X class=](https://us-static.z-dn.net/files/d31/cb638a93116fa16fe55dcb6f20f4d3ac.png)
Answer:
x = 5
Step-by-step explanation:
Looking at the ratios of height to base:
Smaller triangle 3x + 1 : 12
Larger triangle 4x : 3 + 12 = 4x : 15
Therefore as triangles are similar:
3x + 1 : 12 = 4x : 15
Write as fractions:
⇒ [tex]\dfrac{3x+1}{12}=\dfrac{4x}{15}[/tex]
Cross multiply and solve for x:
⇒ 15(3x + 1) = 12 · 4x
⇒ 45x + 15 = 48x
⇒ 15 = 3x
⇒ x = 5
Ratio remains same
[tex]\\ \tt\Rrightarrow \dfrac{3+12}{4x}=\dfrac{12}{3x+1}[/tex]
[tex]\\ \tt\Rrightarrow \dfrac{15}{4x}=\dfrac{12}{3x+1}[/tex]
[tex]\\ \tt\Rrightarrow 15(3x+1)=12(4x)[/tex]
[tex]\\ \tt\Rrightarrow 45x+15=48x[/tex]
[tex]\\ \tt\Rrightarrow 3x=15[/tex]
[tex]\\ \tt\Rrightarrow x=5[/tex]