Answer:
[tex]x=4[/tex]
Step-by-step explanation:
Vertex form of the quadratic equation: [tex]f(x) = a(x - h)^2+k[/tex]
where the vertex is [tex](h, k)[/tex]
Given vertex = (6, 5):
[tex]\implies f(x) = a(x - 6)^2+5[/tex]
If one the x-intercepts is (8, 0):
[tex]\implies f(8) =0[/tex]
[tex]\implies a(8 - 6)^2+5=0[/tex]
[tex]\implies 4a+5=0[/tex]
[tex]\implies a=-\dfrac{5}{4}[/tex]
Therefore, equation of parabola:
[tex]\implies f(x) = -\dfrac54(x - 6)^2+5[/tex]
x-intercepts occur when f(x) = 0:
[tex]\implies f(x)=0[/tex]
[tex]\implies -\dfrac54(x - 6)^2+5=0[/tex]
[tex]\implies -\dfrac54(x - 6)^2=-5[/tex]
[tex]\implies (x - 6)^2=4[/tex]
[tex]\implies x-6=\pm 2[/tex]
[tex]\implies x=8, x=4[/tex]
Therefore, the x-coordinate of the other x-intercept is 4.