Respuesta :

Answer:

-2n²

Step-by-step explanation:

Using the image attached:
We see that the second differences (blue ones) are all equal so we conclude that this is a quadratic sequence.
The quadratic sequence has the form:
[tex]T_{n} = an^{2} +bn +c[/tex]

To find the value of a we just divide second difference ( -4 ) by 2:

  • [tex]a = \frac{-4}{2}= -2[/tex]

Now we have:

  • [tex]T_{n}= -2n^{2} +bn+c[/tex]

Substitute [tex]n_{1}[/tex] and [tex]n_{2}[/tex] into the equation above:

  • [tex]T_{1} = -2(1)^{2} +b(1) +c[/tex]
  • [tex]T_{2} = -2(2)^{2} +b(2)+c[/tex]

Since [tex]T_{1}[/tex] = -2 and [tex]T_{2}[/tex] = -8 , after simplification we have:

  • [tex]b +c =0[/tex]
  • [tex]2b+c=0[/tex]

The solution of this system is:

  • b=0, c =0

The general term is :

[tex]T_{n} = -2n^{2}[/tex]

Ver imagen Аноним
ACCESS MORE