Respuesta :

Let ∠1 be x

Let ∠2 be x-12

ATQ,

[tex] \rm(x - 12 )+ x = 90 \degree[/tex]

[tex] \rm2x - 12 = 90 \degree[/tex]

[tex] \rm2x = 90 + 12[/tex]

[tex] \rm2x = 102[/tex]

[tex] \boxed{ \bf \: x = 51 \degree}[/tex]

So,

[tex] \sf \: ∠1 = x \\ \sf \: = 51 \degree[/tex]

[tex] \sf \: ∠2 = x - 12 \\ \sf = \: 51 - 12 \\ \sf∠2 = 39 \degree[/tex]

Answer:

one angle: 51° and other angle: 39°

We can simply find:

  • complementary angle is when two angles add up to 90°
  • let one angle be x
  • then the another angle will be [ x - 12° ]

Solve:

x - 12 + x = 90

2x = 90 + 12

x = 51°

one angle 51°

other angle: x - 12 → 51° - 12 → 39°