Respuesta :
Let ∠1 be x
Let ∠2 be x-12
ATQ,
[tex] \rm(x - 12 )+ x = 90 \degree[/tex]
[tex] \rm2x - 12 = 90 \degree[/tex]
[tex] \rm2x = 90 + 12[/tex]
[tex] \rm2x = 102[/tex]
[tex] \boxed{ \bf \: x = 51 \degree}[/tex]
So,
[tex] \sf \: ∠1 = x \\ \sf \: = 51 \degree[/tex]
[tex] \sf \: ∠2 = x - 12 \\ \sf = \: 51 - 12 \\ \sf∠2 = 39 \degree[/tex]
Answer:
one angle: 51° and other angle: 39°
We can simply find:
- complementary angle is when two angles add up to 90°
- let one angle be x
- then the another angle will be [ x - 12° ]
Solve:
x - 12 + x = 90
2x = 90 + 12
x = 51°
one angle → 51°
other angle: x - 12 → 51° - 12 → 39°