Respuesta :

Answer:

5

Step-by-step explanation:

sin

u

=

5

13

. First, find cos u.

cos

2

u

=

1

sin

2

u

=

1

25

169

=

144

169

-->

cos

u

=

±

12

13

.

Since u is in Quadrant 2, then, cos u < 0.

cos

u

=

12

13

.

To find

cos

(

u

2

)

, apply trig identity:

2

cos

2

(

u

2

)

=

1

+

cos

u

=

1

12

13

=

1

13

cos

2

(

u

2

)

=

1

26

-->

cos

(

u

2

)

=

±

1

26

.

Sin u is in Quadrant 2, then

u

2

is in Quadrant 1, and

cos

(

u

2

)

is positive:

cos

(

u

2

)

=

1

26

=

26

26

To find

sin

(

u

2

)

, apply the trig identity:

sin

u

=

2

sin

(

u

2

)

.

cos

(

u

2

)

sin

(

u

2

)

=

sin

u

2

cos

(

u

2

)

=

(

5

13

)

(

26

2

)

=

5

26

26

tan

(

u

2

)

=

sin

(

u

2

)

cos

(

u

2

)

=

(

5

26

26

)

(

26

)

=

5

ACCESS MORE