Respuesta :

The correct answer is:  " [tex]j^(^-^4^)[/tex] "; or; write as:  " [tex]j^{-4}[/tex] ".

_______

Step-by-step explanation:

Given:  " [tex]\frac{j}{j^4* j}[/tex] " ;  assuming:  " [tex]j\neq 0[/tex] " ;
_______
We are asked to express the correct answer (i.e. simplying the expression in a specific manner):  "as a single term, without a denominator."  
_______
  As such, we can cancel out the "j" in the numerator, to "1" ; and cancel out the "j" in the denominator; to "1" ; since:  " j ÷ j = 1 " ;  

→  And we can rewrite the expression as:
   "  [tex]\frac{1}{j^{4}* 1 }[/tex] " ;

         =  " [tex]\frac{1}{j^4}[/tex] " ;
_______
Now, note the following property of exponents:
_______
   " [tex]x[/tex]⁽⁻ⁿ⁾ =  [tex]\frac{1}{x^n}[/tex] " ;  {" [tex]x\neq 0[/tex] "} ;
_______
Likewise:
  " [tex]\frac{1}{j^4}[/tex] ⇔ " [tex]j^(^-^4^)[/tex] " ; which is the correct answer:  

  →  " [tex]\frac{1}{j^4} = j^{-4}[/tex] " .
_______
Hope this is helpful to you!
_______

Hi! I will help you with a smile! :)

  • Recall the Properties of Exponents:
  • [tex]\bold{a^{m} *a^n =a^{m+n}}[/tex]
  • Now, let's use this property to solve our problem:
  • [tex]\displaystyle\frac{j}{j^{4} *j}[/tex]
  • [tex]\displaystyle\frac{j}{j^{4+1} }[/tex]
  • [tex]\displaystyle\frac{j}{j^{5} }[/tex]
  • Now, here comes the 2nd Property of Exponents:
  • [tex]\displaystyle\frac{a^{m} }{a^{n} } =a^{m-n}[/tex]
  • Let's use this property to solve our problem:
  • [tex]\displaystyle\frac{j}{j^{5} } =j^{1-5}[/tex]
  • Think of j as j to the first power.
  • Now, subtract the exponents:
  • [tex]\bold{j^{-4}}[/tex]

Answer:

[tex]\huge\boxed{j^{-4} }}\checkmark[/tex]

Hope it helps.

Please comment if you have any doubts.

Answered by

[tex]\fbox{PeacefulNature}[/tex]

[tex]\text{Enjoy Your Day, Evening, or Night!}[/tex]

ACCESS MORE

Otras preguntas